IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1112-d675083.html
   My bibliography  Save this article

Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability

Author

Listed:
  • Mohamed E. A. El-sayed

    (Agriculture Research Center, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Mohamed Hazman

    (Agricultural Research Center (ARC), Agricultural Genetic Engineering Research Institute (AGERI), 9 Gamma Street, Giza 12619, Egypt)

  • Ayman Gamal Abd El-Rady

    (Agricultural Research Center, Wheat Research Department, Field Crops Research Institute, Giza 12619, Egypt)

  • Lal Almas

    (Department of Agricultural Sciences, Paul Engler College of Agriculture and Natural Sciences, West Texas A & M University, Canyon, TX 79016, USA)

  • Mike McFarland

    (Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA)

  • Ali Shams El Din

    (Faculty of Agriculture, Benha University, Benha 13511, Egypt)

  • Steve Burian

    (Alabama Water Institute, The University of Alabama, Tuscaloosa, AL 35487, USA)

Abstract

The goal of this study is to assess the use of saline groundwater in combination with soil amendments to increase the efficiency of wheat production in new agricultural soil in Egypt. The experiment was conducted during the two consecutive growing seasons, 2019/2020 and 2020/2021, at the Shandaweel Agricultural Research Station, Sohag, Egypt. In this study, plants of Shandaweel 1 spring bread wheat cultivar were grown under the combinations of the two water treatments, i.e., freshwater (307.2 ppm) and saline water (3000 ppm (NaCl + MgCl 2 )) representing groundwater in Egypt delivered by drip irrigation and the two biochar rates, i.e., zero and 4.8 ton/ha as a soil amendment. The cob corn biochar (CCB) was synthesized by using the slow pyrolysis process (one hour at 350 °C). The results revealed that saline water reduced the grain yield ratio by 8.5%, 11.0%, and 9.7% compared to non-saline water during seasons 2019/2020 and 2020/2021 and over seasons, respectively. Concerning, combined over seasons, the biochar addition enhanced the grain yield by 5.6% and 13.8% compared to non-biochar addition under fresh and saline irrigation water conditions, respectively. Thus, the results indicated and led to a preliminary recommendation that saline groundwater is a viable source of irrigation water and that biochar seemed to alleviate salinity stress on wheat production and in reclaimed soils of Egypt.

Suggested Citation

  • Mohamed E. A. El-sayed & Mohamed Hazman & Ayman Gamal Abd El-Rady & Lal Almas & Mike McFarland & Ali Shams El Din & Steve Burian, 2021. "Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1112-:d:675083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    2. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    3. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    4. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(Supplemen), pages 33-39, January.
    5. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    6. Molden, David J. & Sakthivadivel, Ramasamy & Habib, Zaigham, 2001. "Basin-level use and productivity of water: examples from South Asia," IWMI Research Reports 61099, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Biochar as an Environment-Friendly Alternative for Multiple Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    2. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    3. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    4. Tarantino, Emanuele & Pavanini, Nicola & Mayordomo, Sergio, 2020. "The Impact of Alternative Forms of Bank Consolidation on Credit Supply and Financial Stability," CEPR Discussion Papers 15069, C.E.P.R. Discussion Papers.
    5. Misbah Haque & Imran Ali, 2016. "Uncertain Environment and Organizational Performance: The Mediating Role of Organizational Innovation," Asian Social Science, Canadian Center of Science and Education, vol. 12(9), pages 124-124, September.
    6. repec:spo:wpmain:info:hdl:2441/2082 is not listed on IDEAS
    7. , & ,, 2015. "Strategy-proofness and efficiency with non-quasi-linear preferences: a characterization of minimum price Walrasian rule," Theoretical Economics, Econometric Society, vol. 10(2), May.
    8. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    9. Nobuyoshi Yamori & Ayami Kobayashi, 2007. "Wealth Effect Of Public Fund Injections To Ailing Banks: Do Deferred Tax Assets And Auditing Firms Matter?," The Japanese Economic Review, Japanese Economic Association, vol. 58(4), pages 466-483, December.
    10. Vladimir Krivtsov & Brian J. D’Arcy & Alejandro Escribano Sevilla & Scott Arthur & Chris Semple, 2021. "Mitigating Polluted Runoff from Industrial Estates by SUDS Retrofits: Case Studies of Problems and Solutions Co-Designed with a Participatory Approach," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Werner, Katharina & Graf Lambsdorff, Johann, 2016. "Emotional numbing and lessons learned after a violent conflict - Experimental evidence from Ambon, Indonesia," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-74-16, University of Passau, Faculty of Business and Economics.
    12. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    13. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    14. Janine A. Wright & Richard J. Barker & Matthew R. Schofield & Alain C. Frantz & Andrea E. Byrom & Dianne M. Gleeson, 2009. "Incorporating Genotype Uncertainty into Mark–Recapture-Type Models For Estimating Abundance Using DNA Samples," Biometrics, The International Biometric Society, vol. 65(3), pages 833-840, September.
    15. Ghosal, Sayantan & Thampanishvong, Kannika, 2013. "Does strengthening Collective Action Clauses (CACs) help?," Journal of International Economics, Elsevier, vol. 89(1), pages 68-78.
    16. Radoslav Škapa, 2014. "Formalized Planning and Its Connection With the Development of Reverse Logistics: the Case of Services," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 62(4), pages 749-755.
    17. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    18. Ying-Jie Li & Dong-Hui Li, 2009. "Truncated regularized Newton method for convex minimizations," Computational Optimization and Applications, Springer, vol. 43(1), pages 119-131, May.
    19. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    20. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    21. Tong Shu & Xiaoqin Gao & Shou Chen & Shouyang Wang & Kin Keung Lai & Lu Gan, 2016. "Weighing Efficiency-Robustness in Supply Chain Disruption by Multi-Objective Firefly Algorithm," Sustainability, MDPI, vol. 8(3), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1112-:d:675083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.