IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2472-d1610168.html
   My bibliography  Save this article

Digitally-Enabled Carbon Reduction in Plastics Supply Chain Based on Literature Review Method

Author

Listed:
  • Changping Zhao

    (Business School, Shanghai Normal University Tianhua College, Shanghai 201815, China
    Changshu Institute of Technology, Changshu 215500, China)

  • Bill Wang

    (Institute of Innovation & Supply Chain Development, College of Business and Public Management, Wenzhou Kean University, Wenzhou 325060, China)

  • Maliyamu Saidula

    (College of Economic and Management, Shihezi University, Shihezi 832003, China)

  • Yu Gong

    (Southampton Business School, University of Southampton, Southampton SO17 3QY, UK)

  • Mohammed Alharithi

    (Department of Management, College of Business Administration, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

Abstract

The issue of carbon emissions in the plastic supply chain has attracted global attention, and relevant countries have formulated and introduced economic policies and measures to reduce plastic carbon emissions. To solve this dilemma, some scholars have proposed the path of empowering the plastic supply chain through digital technology to achieve carbon reduction. However, there are few research results on the mechanism of digital technology empowering the carbon reduction of the plastic supply chain. This paper analyzes the results of carbon reduction research in digitally enabled supply chains through a bibliometric review method. Using the keywords of digitally enabled, plastic supply chain, and carbon footprint, the relevant literature of Web of Science was collected, and the research trends, keyword co-occurrence phenomena, and research hotspots were analyzed by VOSviewer. The findings of this study form six clusters of carbon reduction and digitalization research results in the plastic supply chain, from which we derive six future research directions in the field, such as “carbon emission reduction in the consumer side of the plastics supply chain”, “The development of digital industrialization of carbon emission reduction” etc. The contribution of this article lies in constructing a theoretical framework model for digital technology empowering carbon reduction in the plastic supply chain, which provides a theoretical basis for governments and plastic industry enterprises to promote carbon neutrality.

Suggested Citation

  • Changping Zhao & Bill Wang & Maliyamu Saidula & Yu Gong & Mohammed Alharithi, 2025. "Digitally-Enabled Carbon Reduction in Plastics Supply Chain Based on Literature Review Method," Sustainability, MDPI, vol. 17(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2472-:d:1610168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiuping Xu & Xianglan Jiang & Zhibin Wu, 2016. "A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    2. Yu, Yugang & Luo, Yifei & Shi, Ye, 2022. "Adoption of blockchain technology in a two-stage supply chain: Spillover effect on workforce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    4. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    5. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    6. Sa Xu & Cunyi Yang & Zhehao Huang & Pierre Failler, 2022. "Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    7. Chin, Tachia & Shi, Yi & Singh, Sanjay Kumar & Agbanyo, George Kwame & Ferraris, Alberto, 2022. "Leveraging blockchain technology for green innovation in ecosystem-based business models: A dynamic capability of values appropriation," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Joana C. Prata & Ana L. Patrício Silva & João P. da Costa & Catherine Mouneyrac & Tony R. Walker & Armando C. Duarte & Teresa Rocha-Santos, 2019. "Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution," IJERPH, MDPI, vol. 16(13), pages 1-19, July.
    9. Yu Gong & Yun Zhang & Mohammed Alharithi, 2022. "Supply Chain Finance and Blockchain in Operations Management: A Literature Review," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    10. Yu Gong & Shenghao Xie & Deepak Arunachalam & Jiang Duan & Jianli Luo, 2022. "Blockchain‐based recycling and its impact on recycling performance: A network theory perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3717-3741, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Kee-hung & Feng, Yunting & Zhu, Qinghua, 2023. "Digital transformation for green supply chain innovation in manufacturing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    2. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    3. Chuan Tian & Guohui Feng & Huanyu Li, 2023. "Empirical Study on the Impact of Urbanization and Carbon Emissions under the Dual-Carbon Framework Based on Coupling and Coordination," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    4. Simone Blanc & Stefano Massaglia & Filippo Brun & Cristiana Peano & Angela Mosso & Nicole Roberta Giuggioli, 2019. "Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    5. Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    6. Verônica Maurer Tabim & Néstor Fabián Ayala & Alejandro G. Frank, 2024. "Implementing Vertical Integration in the Industry 4.0 Journey: Which Factors Influence the Process of Information Systems Adoption?," Information Systems Frontiers, Springer, vol. 26(5), pages 1615-1632, October.
    7. Thi Thanh Thuy Phan & Van Viet Nguyen & Hong Thi Thu Nguyen & Chun-Hung Lee, 2022. "Integrating Citizens’ Importance-Performance Aspects into Sustainable Plastic Waste Management in Danang, Vietnam," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    8. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    9. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
    10. Ed Burton & David John Edwards & Chris Roberts & Nicholas Chileshe & Joseph H. K. Lai, 2021. "Delineating the Implications of Dispersing Teams and Teleworking in an Agile UK Construction Sector," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    11. Michal Gluszak & Remigiusz Gawlik & Malgorzata Zieba, 2019. "Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study," Administrative Sciences, MDPI, vol. 9(3), pages 1-16, July.
    12. Prabhu Mannadhan & Jerzy Ryszard Szymański & Marta Zurek-Mortka & Mithileysh Sathiyanarayanan, 2024. "A Novel Framework for the Iraqi Manufacturing Industry Towards the Adoption of Industry 4.0," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    13. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    14. Oscar F. Bustinza & Ferrán Vendrell-Herrero & Francisco J. Sánchez-Montesinos & José Antonio Campos-Granados, 2021. "Should Manufacturers Support the Entire Product Lifecycle with Services?," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    15. Ge Zhang & Yuxiang Gao & Gaoyong Li, 2023. "Research on Digital Transformation and Green Technology Innovation—Evidence from China’s Listed Manufacturing Enterprises," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    16. Jorge Andrés-Sánchez & Jaume Gené-Albesa, 2024. "Not with the bot! The relevance of trust to explain the acceptance of chatbots by insurance customers," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    17. Tortorella, Guilherme Luz & Narayanamurthy, Gopalakrishnan & Thurer, Matthias, 2021. "Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry," International Journal of Production Economics, Elsevier, vol. 231(C).
    18. Ghannouchi, Imen, 2023. "Examining the dynamic nexus between industry 4.0 technologies and sustainable economy: New insights from empirical evidence using GMM estimator across 20 OECD nations," Technology in Society, Elsevier, vol. 75(C).
    19. Katarzyna Bułkowska & Magdalena Zielińska & Maciej Bułkowski, 2024. "Blockchain-Based Management of Recyclable Plastic Waste," Energies, MDPI, vol. 17(12), pages 1-25, June.
    20. Ismael Cristofer Baierle & Francisco Tardelli da Silva & Ricardo Gonçalves de Faria Correa & Jones Luís Schaefer & Matheus Becker Da Costa & Guilherme Brittes Benitez & Elpidio Oscar Benitez Nara, 2022. "Competitiveness of Food Industry in the Era of Digital Transformation towards Agriculture 4.0," Sustainability, MDPI, vol. 14(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2472-:d:1610168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.