IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2215-d1604850.html
   My bibliography  Save this article

Study on the Effects of Tar Reforming and Steam Gasification of Keyaki Bark in Saitama Prefecture

Author

Listed:
  • Shangrong Wu

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan)

  • Qingyue Wang

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan)

  • Isobe Ryota

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan)

Abstract

Keyaki bark is an abundant untapped resource of biomass in Saitama Prefecture, Japan, for steam gasification and tar reforming. To optimize performance, raw bark underwent demineralization with HCl to remove native metals and calcium impregnation using Ca (OH) 2 . Gasification experiments were conducted at 900 °C using steam and CO 2 as gasifying agents. The tar was reformed in a two-stage metal reactor, resulting in improved syngas yields. Results showed that demineralization enhanced gasification efficiency, producing higher hydrogen (H 2 ) and carbon monoxide (CO) yields compared to untreated samples. Experiments have shown that steam gasification of bark char produced 142% more syngas compared to raw bark, with H 2 yield increasing by 86% and CO yield by 250%. Additionally, the two-stage metal tube reactor generated 200% more syngas than raw bark gasification and 24% more than bark char gasification. Therefore, we confirmed the feasibility of using the two-stage metal tube reactor for tar reforming to enhance syngas production in steam gasification processes. Keyaki bark’s high carbon and low ash content make it a promising feedstock for sustainable energy production.

Suggested Citation

  • Shangrong Wu & Qingyue Wang & Isobe Ryota, 2025. "Study on the Effects of Tar Reforming and Steam Gasification of Keyaki Bark in Saitama Prefecture," Sustainability, MDPI, vol. 17(5), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2215-:d:1604850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shangrong Wu & Qingyue Wang & Weiqian Wang & Yanyan Wang & Dawei Lu, 2024. "Characterization of Waste Biomass Fuel Prepared from Coffee and Tea Production: Its Properties, Combustion, and Emissions," Sustainability, MDPI, vol. 16(17), pages 1-16, August.
    2. Bisen, Divya & Chouhan, Ashish Pratap Singh & Pant, Manish & Chakma, Sankar, 2025. "Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    3. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Babu, A.K. & Kumaresan, G. & Raj, V. Antony Aroul & Velraj, R., 2018. "Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 536-556.
    5. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel B. Sulis & Nathalie Lavoine & Heike Sederoff & Xiao Jiang & Barbara M. Marques & Kai Lan & Carlos Cofre-Vega & Rodolphe Barrangou & Jack P. Wang, 2025. "Advances in lignocellulosic feedstocks for bioenergy and bioproducts," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
    3. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    4. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    5. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    6. Zuberi, Mehwish & Spies, Michael & Nielsen, Jonas Ø., 2024. "Is there a future for smallholder farmers in bioeconomy? The case of ‘improved’ seeds in South Punjab, Pakistan," Forest Policy and Economics, Elsevier, vol. 158(C).
    7. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    8. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    9. Qu, Hongjin & Lu, Tianliang & Yang, Xiaomei & Zhou, Lipeng, 2024. "Promoting tin into the framework of β zeolite via stabilizing Sn species and its catalytic performance for the conversion of ethyl levulinate to γ-valerolactone," Renewable Energy, Elsevier, vol. 229(C).
    10. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    12. Jia, Yongsheng & Wang, Yingjie & Zhang, Qi & Rong, Hongwei & Liu, Yuhuan & Xiao, Bo & Guo, Dabin & Laghari, Mahmood & Ruan, Roger, 2022. "Gas-carrying enhances the combustion temperature of the biomass particles," Energy, Elsevier, vol. 239(PA).
    13. Rachna, & Singh, Amit Kumar, 2024. "Analyzing policy interventions to stimulate suitable energy sources for the most polluted states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    14. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "E-Technology Enabled Sourcing of Alternative Fuels to Create a Fair-Trade Circular Economy for Sustainable Energy in Togo," Energies, MDPI, vol. 16(9), pages 1-18, April.
    15. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    16. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    17. Arley Salazar-Hincapié & Alvaro Delgado-Mejía & Andrés Felipe Romero-Maya & Eduardo Duque-Grisales, 2020. "Experimental Assessment of the Thermal Performance of a Heat Pump Dryer System Based on the Variations in Compressor Discharge Pressure on Oregano Drying," Energies, MDPI, vol. 13(23), pages 1-14, December.
    18. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Zhu, Ming-Qiang, 2023. "Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model," Energy, Elsevier, vol. 264(C).
    19. Cai, Mengfan & An, Chunjiang & Guy, Christophe, 2021. "A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2215-:d:1604850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.