IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6333-d454267.html
   My bibliography  Save this article

Experimental Assessment of the Thermal Performance of a Heat Pump Dryer System Based on the Variations in Compressor Discharge Pressure on Oregano Drying

Author

Listed:
  • Arley Salazar-Hincapié

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Medellín 050041, Colombia)

  • Alvaro Delgado-Mejía

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Medellín 050041, Colombia)

  • Andrés Felipe Romero-Maya

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Medellín 050041, Colombia)

  • Eduardo Duque-Grisales

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Medellín 050041, Colombia)

Abstract

The current study shows an empirical analysis to establish the effects of the variations in compressor discharge pressure on the drying performance of aromatic herbs, in terms of the coefficient of performance (CoP), moisture content (MC), specific moisture extraction rate (SMER), drying temperature, drying time and energy consumption. In conducting the research, a heat pump drying system was utilized as a mechanism for dehydrating herbs, seeds, and fruits. It was used thanks to its benefits like higher efficiency and its low power consumption. Three levels of discharge pressure were considered, 1380 kPa, 1100 kPa, and 827 kPa, using 1,1,1,2-tetrafluoroethane (R134a) as a refrigerant and oregano leaves as the main product. The findings show that, concerning the same oregano moisture sample, the lower the compressor discharge pressure, the lower drying temperature, also, the higher drying time was obtained. Despite the fact that the CoP decreased with the compressor discharge pressure, in comparison with the baseline case, it remained essentially the same for the other two cases.

Suggested Citation

  • Arley Salazar-Hincapié & Alvaro Delgado-Mejía & Andrés Felipe Romero-Maya & Eduardo Duque-Grisales, 2020. "Experimental Assessment of the Thermal Performance of a Heat Pump Dryer System Based on the Variations in Compressor Discharge Pressure on Oregano Drying," Energies, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6333-:d:454267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ya Yuan & Wenye Lin & Xiang Mao & Weizhao Li & Luwei Yang & Juan Wei & Bo Xiao, 2019. "Performance Analysis of Heat Pump Dryer with Unit-Room in Cold Climate Regions," Energies, MDPI, vol. 12(16), pages 1-18, August.
    2. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    3. Mohammadi, Iman & Tabatabaekoloor, Reza & Motevali, Ali, 2019. "Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices," Energy, Elsevier, vol. 170(C), pages 149-158.
    4. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    5. Babu, A.K. & Kumaresan, G. & Raj, V. Antony Aroul & Velraj, R., 2018. "Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 536-556.
    6. Haolu Liu & Khurram Yousaf & Kunjie Chen & Rui Fan & Jiaxin Liu & Shakeel Ahmed Soomro, 2018. "Design and Thermal Analysis of an Air Source Heat Pump Dryer for Food Drying," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    7. Giuliano Zambonin & Fabio Altinier & Alessandro Beghi & Leandro dos Santos Coelho & Nicola Fiorella & Terenzio Girotto & Mirco Rampazzo & Gilberto Reynoso-Meza & Gian Antonio Susto, 2019. "Machine Learning-Based Soft Sensors for the Estimation of Laundry Moisture Content in Household Dryer Appliances," Energies, MDPI, vol. 12(20), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    2. Uysal, Cuneyt & Keçebaş, Ali, 2021. "Advanced exergoeconomic analysis with using modified productive structure analysis: An application for a real gas turbine cycle," Energy, Elsevier, vol. 223(C).
    3. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    4. Cheng, Jia-Hao & Cao, Xiang & Shao, Liang-Liang & Zhang, Chun-Lu, 2023. "Performance evaluation of a novel heat pump system for drying with EVI-compressor driven precooling and reheating," Energy, Elsevier, vol. 278(PB).
    5. Xing, Tianyu & Luo, Xi & Li, Ming & Wang, Yunfeng & Deng, Zhihan & Yao, Muchi & Zhang, Wenxiang & Zhang, Zude & Gao, Meng, 2023. "Study on drying characteristics of Gentiana macrophylla under the interaction of temperature and relative humidity," Energy, Elsevier, vol. 273(C).
    6. Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
    7. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    8. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    9. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
    10. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    11. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
    12. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    13. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    14. Chi, Xiang & Tang, Sai & Song, Xiaoxue & Rahimi, Sohrab & Ren, Zechun & Han, Guangping & Shi, Sheldon Q. & Cheng, Wanli & Avramidis, Stavros, 2023. "Energy and quality analysis of forced convection air-energy assisted solar timber drying," Energy, Elsevier, vol. 283(C).
    15. Gilago, Mulatu C. & V.P., Chandramohan, 2022. "Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd," Energy, Elsevier, vol. 252(C).
    16. Kuznetsov, G.V. & Nigay, N.A. & Syrodoy, S.V. & Gutareva, N. Yu & Malyshev, D. Yu, 2022. "A comparative analysis of the characteristics of the water removal processes in preparation for incineration of typical wood waste and forest combustible materials," Energy, Elsevier, vol. 239(PE).
    17. Choi, JunYoung & Lee, DongChan & Park, Myeong Hyeon & Lee, Yongju & Kim, Yongchan, 2021. "Effects of compressor frequency and heat exchanger geometry on dynamic performance characteristics of heat pump dryers," Energy, Elsevier, vol. 235(C).
    18. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    19. Francileni Pompeu Gomes & Osvaldo Resende & Elisabete Piancó de Sousa & Juliana Aparecida Célia & Kênia Borges de Oliveira, 2022. "Application of Mathematical Models and Thermodynamic Properties in the Drying of Jambu Leaves," Agriculture, MDPI, vol. 12(8), pages 1-11, August.
    20. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6333-:d:454267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.