IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics0960148124008140.html
   My bibliography  Save this article

Promoting tin into the framework of β zeolite via stabilizing Sn species and its catalytic performance for the conversion of ethyl levulinate to γ-valerolactone

Author

Listed:
  • Qu, Hongjin
  • Lu, Tianliang
  • Yang, Xiaomei
  • Zhou, Lipeng

Abstract

Tin-containing β zeolite exhibits excellent catalytic performance in various biomass conversions to high-value chemicals due to its strong Lewis (L) acidity produced by framework Sn4+ sites. However, it is difficult to incorporate Sn species into the framework of β zeolite due to that the ionic radius of Sn (0.69 Å) is larger than that of Si (0.40 Å). Herein, organic additives with carbonyl, hydroxyl, aldehyde or amine groups were used to stabilize Sn species in the gel and framework Sn4+ in the zeolite. Among all additives, acetone (AC) has the best stabilizing effect on Sn species. The stabilization effect between AC and Sn4+ sites was observed by FT-IR. The characterization results indicate that more tin species were incorporated into β framework and the L acid density increased due to the complexation between carbonyl group and Sn species. Compared to Sn-β-3d synthesized without additive, the L acid density of Sn-β-AC-3d increased by ∼50% (from 21 μmol g−1 to 34 μmol g−1). For the conversion of ethyl levulinate to γ-valerolactone, the reaction reached equilibrium faster over Sn-β-AC-3d than over Sn-β-3d at the investigated reaction temperatures. A yield of 98% was obtained over Sn-β-AC-3d at 110 °C. Besides, Sn-β-AC-3d exhibited good stability and reusability.

Suggested Citation

  • Qu, Hongjin & Lu, Tianliang & Yang, Xiaomei & Zhou, Lipeng, 2024. "Promoting tin into the framework of β zeolite via stabilizing Sn species and its catalytic performance for the conversion of ethyl levulinate to γ-valerolactone," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008140
    DOI: 10.1016/j.renene.2024.120746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Cai, Bo & Kang, Rui & Feng, Junfeng & Eberhardt, Thomas L. & Ma, Zhongqing & Zhu, Qingge & Pan, Hui, 2024. "Construction of Cu–Ru bimetallic catalyst for the selective catalytic transfer hydrogenation of carbonyl (CO) in biomass-derived compounds," Renewable Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    2. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    3. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    4. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    5. Cai, Mengfan & An, Chunjiang & Guy, Christophe, 2021. "A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Du, Ya-Peng & Tian, Xin-Yu & Zheng, Xiao-Ping & Chai, Yu & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "Efficient preparation of 5-hydroxymethylfurfural from cellulose via one-step combination of mechanical and chemical pre-treatment," Renewable Energy, Elsevier, vol. 229(C).
    8. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    9. Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
    10. Zuberi, Mehwish & Spies, Michael & Nielsen, Jonas Ø., 2024. "Is there a future for smallholder farmers in bioeconomy? The case of ‘improved’ seeds in South Punjab, Pakistan," Forest Policy and Economics, Elsevier, vol. 158(C).
    11. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    12. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    13. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Jia, Yongsheng & Wang, Yingjie & Zhang, Qi & Rong, Hongwei & Liu, Yuhuan & Xiao, Bo & Guo, Dabin & Laghari, Mahmood & Ruan, Roger, 2022. "Gas-carrying enhances the combustion temperature of the biomass particles," Energy, Elsevier, vol. 239(PA).
    15. Rachna, & Singh, Amit Kumar, 2024. "Analyzing policy interventions to stimulate suitable energy sources for the most polluted states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    16. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "E-Technology Enabled Sourcing of Alternative Fuels to Create a Fair-Trade Circular Economy for Sustainable Energy in Togo," Energies, MDPI, vol. 16(9), pages 1-18, April.
    17. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    18. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Zhu, Ming-Qiang, 2023. "Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model," Energy, Elsevier, vol. 264(C).
    19. Mukherjee, Agneev & Bruijnincx, Pieter & Junginger, Martin, 2023. "Techno-economic competitiveness of renewable fuel alternatives in the marine sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    20. Hassan, Qusay & Nassar, Ahmed K. & Algburi, Sameer & Fouly, Ahmed & Awwad, Emad Mahrous & Jaszczur, Marek & Viktor, Patrik & Amjad, Ayesha & Fakhruldeen, Hassan Falah & Al-Jiboory, Ali Khudhair & Same, 2024. "Evaluation of solar and biomass perspectives using geographic information system - The case of Iraq regions," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.