IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1849-d1596938.html
   My bibliography  Save this article

Valorisation of Red Mud: Disclosing the Potential of an Abundant Residue

Author

Listed:
  • Carlos A. Vielma

    (Departament de Ciència de Materials i Química Física, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain)

  • Adela Svobodova-Sedlackova

    (Departament de Ciència de Materials i Química Física, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
    Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
    Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain)

  • Josep Maria Chimenos

    (Departament de Ciència de Materials i Química Física, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain)

  • Ana Inés Fernández

    (Departament de Ciència de Materials i Química Física, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain)

  • Carlos Berlanga

    (Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
    Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain)

  • Rafael Rodriguez

    (Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
    Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain)

  • Camila Barreneche

    (Departament de Ciència de Materials i Química Física, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain)

Abstract

Red mud (RM), the primary waste product of the aluminium industry, is notable for its high concentrations of metals and rare earth elements (REE). Efforts have been made to develop extraction methods for REE recovery from RM, aiming to enhance its valorisation and reduce the European reliance on external REE sources—particularly crucial for technological advancements and the transition to renewable energy. However, these methods have only been limited to low technology readiness levels (TRLs), with no economically or technically viable processing routes yet defined to enable large-scale industrialisation within a circular economy model. This study characterised RM samples from the Seydişehir region in Türkiye using different techniques and explored the experimental process for recovering metals and REE. Moreover, the study assessed the global prospective potential of RM based on technical and economic data, as well as the sustainability of the implemented process through the life cycle assessment (LCA) tool. Results showed a total REE concentration of up to 1600 ppm, with Ce, being the most abundant (426 ± 27 ppm), followed by La, Nd, and Sc. Concentration efficiencies for La and Nd ranged between 240–300%. Sc, Y, Ce, La, and Nd have significant usage in European markets and represent prime RM targets for further prospecting. The LCA revealed that the highest global warming potential of the sequential extraction process was attributed to hydroxylamine hydrochloride and hydrogen peroxide. The findings highlight the need to explore alternative, more eco-friendly reagents to improve RM valorisation.

Suggested Citation

  • Carlos A. Vielma & Adela Svobodova-Sedlackova & Josep Maria Chimenos & Ana Inés Fernández & Carlos Berlanga & Rafael Rodriguez & Camila Barreneche, 2025. "Valorisation of Red Mud: Disclosing the Potential of an Abundant Residue," Sustainability, MDPI, vol. 17(5), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1849-:d:1596938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
    2. Machacek, Erika & Kalvig, Per, 2016. "Assessing advanced rare earth element-bearing deposits for industrial demand in the EU," Resources Policy, Elsevier, vol. 49(C), pages 186-203.
    3. Pavel, Claudiu C. & Lacal-Arántegui, Roberto & Marmier, Alain & Schüler, Doris & Tzimas, Evangelos & Buchert, Matthias & Jenseit, Wolfgang & Blagoeva, Darina, 2017. "Substitution strategies for reducing the use of rare earths in wind turbines," Resources Policy, Elsevier, vol. 52(C), pages 349-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    2. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Salim, Hengky & Sahin, Oz & Elsawah, Sondoss & Turan, Hasan & Stewart, Rodney A., 2022. "A critical review on tackling complex rare earth supply security problem," Resources Policy, Elsevier, vol. 77(C).
    4. Xavier, Lúcia Helena & Giese, Ellen Cristine & Ribeiro-Duthie, Ana Cristina & Lins, Fernando Antonio Freitas, 2021. "Sustainability and the circular economy: A theoretical approach focused on e-waste urban mining," Resources Policy, Elsevier, vol. 74(C).
    5. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    6. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    7. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Machacek, Erika & Fold, Niels, 2014. "Alternative value chains for rare earths: The Anglo-deposit developers," Resources Policy, Elsevier, vol. 42(C), pages 53-64.
    9. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    10. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    11. Wübbeke, Jost, 2013. "Rare earth elements in China: Policies and narratives of reinventing an industry," Resources Policy, Elsevier, vol. 38(3), pages 384-394.
    12. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    13. ZHANG, Lu & GUO, Qing & ZHANG, Junbiao & HUANG, Yong & XIONG, Tao, 2015. "Did China׳s rare earth export policies work? — Empirical evidence from USA and Japan," Resources Policy, Elsevier, vol. 43(C), pages 82-90.
    14. Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
    15. Wang, Xingxing & Li, Huajiao & Yao, Huajun & Zhu, Depeng & Liu, Nairong, 2018. "Simulation analysis of the spread of a supply crisis based on the global natural graphite trade network," Resources Policy, Elsevier, vol. 59(C), pages 200-209.
    16. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    17. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    18. Nwaila, Glen T. & Bourdeau, Julie E. & Zhang, Steven E. & Chipangamate, Nelson & Valodia, Imraan & Mahboob, Muhammad Ahsan & Lehohla, Thakaramahlaha & Shimaponda-Nawa, Mulundumina & Durrheim, Raymond , 2024. "A systematic framework for compilation of critical raw material lists and their importance for South Africa," Resources Policy, Elsevier, vol. 93(C).
    19. Schlinkert, Dominik & van den Boogaart, Karl Gerald, 2015. "The development of the market for rare earth elements: Insights from economic theory," Resources Policy, Elsevier, vol. 46(P2), pages 272-280.
    20. Lucia BALDI & Massimo PERI & Daniela VANDONE, 2013. "Clean Energy Industries and Rare Earth Materials: Economic and Financial Issues," Departmental Working Papers 2013-07, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1849-:d:1596938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.