IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v49y2016icp186-203.html
   My bibliography  Save this article

Assessing advanced rare earth element-bearing deposits for industrial demand in the EU

Author

Listed:
  • Machacek, Erika
  • Kalvig, Per

Abstract

This article examines proposed REE-product volume supply from six advanced rare earth-bearing mineral exploration projects, two of which in Greenland, for REE demand by industrial users in the EU. A methodology is developed which draws on supply chains and published feasibility studies, emphasizing timely data certainty as significant factor of exploration project feasibility. For 2014, our findings for the Greenlandic project exploration proposals reveal that Kvanefjeld would significantly exceed EU demand except for Eu, on which it would undersupply. In contrast, Kringlerne would undersupply on La, Ce and Pr, oversupply on Nd and Y, and on all heavy REE with the exception of Eu. Various disparities between the proposed REE supply from Australian, Canadian and South African projects and EU demand in 2014 are also noted.

Suggested Citation

  • Machacek, Erika & Kalvig, Per, 2016. "Assessing advanced rare earth element-bearing deposits for industrial demand in the EU," Resources Policy, Elsevier, vol. 49(C), pages 186-203.
  • Handle: RePEc:eee:jrpoli:v:49:y:2016:i:c:p:186-203
    DOI: 10.1016/j.resourpol.2016.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420716301040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2016.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancheri, Nabeel A., 2015. "World trade in rare earths, Chinese export restrictions, and implications," Resources Policy, Elsevier, vol. 46(P2), pages 262-271.
    2. Xiaoyue Du & T. E. Graedel, 2011. "Global Rare Earth In‐Use Stocks in NdFeB Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 836-843, December.
    3. Golev, Artem & Scott, Margaretha & Erskine, Peter D. & Ali, Saleem H. & Ballantyne, Grant R., 2014. "Rare earths supply chains: Current status, constraints and opportunities," Resources Policy, Elsevier, vol. 41(C), pages 52-59.
    4. Machacek, Erika & Fold, Niels, 2014. "Alternative value chains for rare earths: The Anglo-deposit developers," Resources Policy, Elsevier, vol. 42(C), pages 53-64.
    5. Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    2. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2018. "Shedding Light on the Anthropogenic Europium Cycle in the EU–28. Marking Product Turnover and Energy Progress in the Lighting Sector," Resources, MDPI, vol. 7(3), pages 1-17, September.
    3. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    4. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    5. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    2. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    3. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).
    4. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    5. Shuai, Jing & Peng, Xinjie & Zhao, Yujia & Wang, Yilan & Xu, Wei & Cheng, Jinhua & Lu, Yang & Wang, Jingjin, 2022. "A dynamic evaluation on the international competitiveness of China's rare earth products: An industrial chain and tech-innovation perspective," Resources Policy, Elsevier, vol. 75(C).
    6. Fan, John Hua & Omura, Akihiro & Roca, Eduardo, 2023. "Geopolitics and rare earth metals," European Journal of Political Economy, Elsevier, vol. 78(C).
    7. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Menéndez Álvarez, Mario & Gent, Malcolm Richard, 2017. "Rare earth elements mining investment: It is not all about China," Resources Policy, Elsevier, vol. 53(C), pages 66-76.
    8. Stanley Udochukwu Ofoegbu, 2019. "Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing," Sustainability, MDPI, vol. 11(23), pages 1-38, November.
    9. Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.
    10. Machacek, Erika & Richter, Jessika Luth & Habib, Komal & Klossek, Polina, 2015. "Recycling of rare earths from fluorescent lamps: Value analysis of closing-the-loop under demand and supply uncertainties," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 76-93.
    11. Paulick, Holger & Machacek, Erika, 2017. "The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives," Resources Policy, Elsevier, vol. 52(C), pages 134-153.
    12. Ana-Cristina Bâlgăr, 2021. "Implications and Challenges of China’s Supremacy on the Global Rare Earths Market," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 9(1), pages 55-68, June.
    13. Yi, Jiahui & Dai, Sheng & Cheng, Jinhua & Wu, Qiaosheng & Liu, Kailei, 2021. "Production quota policy in China: Implications for sustainable supply capacity of critical minerals," Resources Policy, Elsevier, vol. 72(C).
    14. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    15. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Kondo, Yasushi & Tohno, Susumu, 2017. "Economic and social determinants of global physical flows of critical metals," Resources Policy, Elsevier, vol. 52(C), pages 107-113.
    16. Park, Sulgiye & Tracy, Cameron L. & Ewing, Rodney C., 2023. "Reimagining US rare earth production: Domestic failures and the decline of US rare earth production dominance – Lessons learned and recommendations," Resources Policy, Elsevier, vol. 85(PA).
    17. Zhü, kèyù & Zhao, Shuang-yao & Yang, Shanlin & Liang, Changyong & Gu, Dongxiao, 2016. "Where is the way for rare earth industry of China: An analysis via ANP-SWOT approach," Resources Policy, Elsevier, vol. 49(C), pages 349-357.
    18. Han, Aiping & Ge, Jianping & Lei, Yalin, 2015. "An adjustment in regulation policies and its effects on market supply: Game analysis for China’s rare earths," Resources Policy, Elsevier, vol. 46(P2), pages 30-42.
    19. Machacek, Erika & Fold, Niels, 2014. "Alternative value chains for rare earths: The Anglo-deposit developers," Resources Policy, Elsevier, vol. 42(C), pages 53-64.
    20. Schlinkert, Dominik & van den Boogaart, Karl Gerald, 2015. "The development of the market for rare earth elements: Insights from economic theory," Resources Policy, Elsevier, vol. 46(P2), pages 272-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:49:y:2016:i:c:p:186-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.