IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v85y2023ipas0301420723005068.html
   My bibliography  Save this article

A review of competitive advantage theory applied to the global rare earth industry transition

Author

Listed:
  • Thibeault, Al
  • Ryder, Michael
  • Tomomewo, Olusegun
  • Mann, Michael

Abstract

The strategically vital rare earth industry is in a period of transition. The twelve trade-aligned Minerals Security Partnership nations leading this transition are currently addressing two major challenges – single-nation dominance of the production stream and increasing production capacity. Working with their national industries, their bold, post-transition vision of diversified, multi-national production with increased production capacity is being supported by massive government subsidies and new industry strategies. Meeting these two challenges are necessary short-term actions; however, a third challenge that is not being addressed puts the long-term success of the transition at risk. Competitive advantage theory suggests that re-building national competitive advantage determinants as the basis for firm profitability is a necessary condition for long-term transition success. Without a successful transition, critical societal goals such as clean energy transition which are dependent on a stable rare earth industry, are at risk. Long-term benefits from a larger, stable industry accrue to all rare earth industry nations through positive-sum productivity growth. This paper examines relevant research for using competitive advantage theory as an analysis framework for the rare earth industry transition. We noted a literature gap in applying competitive advantage theory to the rare earth industry, providing an opportunity to extend the literature in this important area. Searches of three databases, as well as our repository of articles from previous ad hoc library searches, yielded 51 articles for critical analysis. We found support for using competitive advantage theory as a transition analysis framework, noting theory extensions from two sources that will be required to address gaps in the theory when applied to the rare earth industry transition. The critical analysis revealed the underlying dynamic feedback structure of competitive advantage theory, supporting the use of dynamic simulation modeling for the study of the transition dynamics.

Suggested Citation

  • Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
  • Handle: RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723005068
    DOI: 10.1016/j.resourpol.2023.103795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723005068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willem L. Auping & Erik Pruyt & Jan H. Kwakkel, 2014. "Dealing with Multiple Models in System Dynamics: Perspectives on the Future of Copper," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 3(4), pages 17-35, October.
    2. Simon Glöser-Chahoud & Johannes Hartwig & I. David Wheat & Martin Faulstich, 2016. "The cobweb theorem and delays in adjusting supply in metals' markets," System Dynamics Review, System Dynamics Society, vol. 32(3-4), pages 279-308, July.
    3. Martin Stuermer, 2022. "Non-renewable resource extraction over the long term: empirical evidence from global copper production," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 617-625, December.
    4. Anke Kutschke & Alexandra Rese & Daniel Baier, 2016. "The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    5. Fang, Kai & Zhou, Yunheng & Wang, Shuang & Ye, Ruike & Guo, Sujian, 2018. "Assessing national renewable energy competitiveness of the G20: A revised Porter's Diamond Model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 719-731.
    6. Xibo Wang & Mingtao Yao & Jiashuo Li & Kexue Zhang & He Zhu & Minsi Zheng, 2017. "China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    7. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    8. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Menéndez Álvarez, Mario & Gent, Malcolm Richard, 2017. "Rare earth elements mining investment: It is not all about China," Resources Policy, Elsevier, vol. 53(C), pages 66-76.
    9. Chang Moon, H. & Rugman, Alan M. & Verbeke, Alain, 1998. "A generalized double diamond approach to the global competitiveness of Korea and Singapore," International Business Review, Elsevier, vol. 7(2), pages 135-150, April.
    10. Hayes-Labruto, Leslie & Schillebeeckx, Simon J.D. & Workman, Mark & Shah, Nilay, 2013. "Contrasting perspectives on China's rare earths policies: Reframing the debate through a stakeholder lens," Energy Policy, Elsevier, vol. 63(C), pages 55-68.
    11. Shuai, Jing & Peng, Xinjie & Zhao, Yujia & Wang, Yilan & Xu, Wei & Cheng, Jinhua & Lu, Yang & Wang, Jingjin, 2022. "A dynamic evaluation on the international competitiveness of China's rare earth products: An industrial chain and tech-innovation perspective," Resources Policy, Elsevier, vol. 75(C).
    12. Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
    13. Keilhacker, Michael L. & Minner, Stefan, 2017. "Supply chain risk management for critical commodities: A system dynamics model for the case of the rare earth elements," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 349-362.
    14. Lee, Yurim & Dacass, Tennecia, 2022. "Reducing the United States’ risks of dependency on China in the rare earth market," Resources Policy, Elsevier, vol. 77(C).
    15. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    16. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    17. Christian Ketels, 2006. "Michael Porter’s Competitiveness Framework—Recent Learnings and New Research Priorities," Journal of Industry, Competition and Trade, Springer, vol. 6(2), pages 115-136, June.
    18. Ana Beatriz Lopes de Sousa Jabbour & Charbel Jose Chiappetta Jabbour & Moacir Godinho Filho & David Roubaud, 2018. "Industry 4.0 and the circular economy: a proposed research agenda and original roadmap for sustainable operations," Annals of Operations Research, Springer, vol. 270(1), pages 273-286, November.
    19. Riddle, Matthew & Macal, Charles M. & Conzelmann, Guenter & Combs, Todd E. & Bauer, Diana & Fields, Fletcher, 2015. "Global critical materials markets: An agent-based modeling approach," Resources Policy, Elsevier, vol. 45(C), pages 307-321.
    20. Pengcheng Song & Xuan Zhang & Yu Zhao & Liao Xu, 2020. "Exogenous Shocks on the Dual-country Industrial Network: A Simulation Based on the Policies during the COVID-19 Pandemic," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(15), pages 3554-3561, December.
    21. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    22. Lachman, Daniël A., 2013. "A survey and review of approaches to study transitions," Energy Policy, Elsevier, vol. 58(C), pages 269-276.
    23. Salim, Hengky & Sahin, Oz & Elsawah, Sondoss & Turan, Hasan & Stewart, Rodney A., 2022. "A critical review on tackling complex rare earth supply security problem," Resources Policy, Elsevier, vol. 77(C).
    24. Schlinkert, Dominik & van den Boogaart, Karl Gerald, 2015. "The development of the market for rare earth elements: Insights from economic theory," Resources Policy, Elsevier, vol. 46(P2), pages 272-280.
    25. Pietrobelli, Carlo & Marin, Anabel & Olivari, Jocelyn, 2018. "Innovation in mining value chains: New evidence from Latin America," Resources Policy, Elsevier, vol. 58(C), pages 1-10.
    26. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    27. Zhe Chen & Zhongzhong Hu & Kai Li, 2021. "The spillover effect of trade policy along the value Chain: Evidence from China's rare earth‐related sectors," The World Economy, Wiley Blackwell, vol. 44(12), pages 3550-3582, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Qing & Wang, Yiling, 2024. "Rare earth trade dependence network structure and its impact on trade prices: An industry chain perspective," Resources Policy, Elsevier, vol. 91(C).
    2. Sinclair, Lian & Coe, Neil M., 2024. "Critical mineral strategies in Australia: Industrial upgrading without environmental or social upgrading," Resources Policy, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    2. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    3. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    4. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    5. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    6. Nwaila, Glen T. & Bourdeau, Julie E. & Zhang, Steven E. & Chipangamate, Nelson & Valodia, Imraan & Mahboob, Muhammad Ahsan & Lehohla, Thakaramahlaha & Shimaponda-Nawa, Mulundumina & Durrheim, Raymond , 2024. "A systematic framework for compilation of critical raw material lists and their importance for South Africa," Resources Policy, Elsevier, vol. 93(C).
    7. Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
    8. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Luo, Xianfeng, 2024. "Climate warming, renewable energy consumption and rare earth market: Evidence from the United States," Energy, Elsevier, vol. 290(C).
    9. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    10. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    11. Yanjing Jia & Chao Ding & Zhiliang Dong, 2021. "Transmission Mechanism of Stock Price Fluctuation in the Rare Earth Industry Chain," Sustainability, MDPI, vol. 13(22), pages 1-21, November.
    12. Behnaz Minooei Fard & Willi Semmler & Giovanni Di Bartolomeo, 2023. "Rare Earth Elements: A game between China and the rest of the world," Working Papers in Public Economics 235, Department of Economics and Law, Sapienza University of Roma.
    13. Paulick, Holger & Machacek, Erika, 2017. "The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives," Resources Policy, Elsevier, vol. 52(C), pages 134-153.
    14. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    15. Guo, Qing & You, Wenlan, 2023. "A comprehensive evaluation of the international competitiveness of strategic minerals in China, Australia, Russia and India: The case of rare earths," Resources Policy, Elsevier, vol. 85(PA).
    16. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    17. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    18. ZHANG, Lu & GUO, Qing & ZHANG, Junbiao & HUANG, Yong & XIONG, Tao, 2015. "Did China׳s rare earth export policies work? — Empirical evidence from USA and Japan," Resources Policy, Elsevier, vol. 43(C), pages 82-90.
    19. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    20. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723005068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.