IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6280-d1228216.html
   My bibliography  Save this article

Parameter Estimation Techniques for Photovoltaic System Modeling

Author

Listed:
  • Manish Kumar Singla

    (Department of Interdisciplinary Courses in Engineering, Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, India)

  • Jyoti Gupta

    (Department of Computer Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, India)

  • Parag Nijhawan

    (Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India)

  • Parminder Singh

    (Chemical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India)

  • Nimay Chandra Giri

    (Department of Electronics and Communication Engineering, Centurion University of Technology and Management, Jatni 752050, India)

  • Essam Hendawi

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Mohamed I. Abu El-Sebah

    (Department of Power Electronics and Energy Conversion, Electronics Research Institute, Cairo 11796, Egypt)

Abstract

In improving PV system performance, the parameters associated with electrical photovoltaic equivalent models play a pivotal role. However, due to the increased mathematical complexities and non-linear traits of PV cells, the precise prediction of these parameters is a challenging task. To estimate the parameters associated with PV models, a reliable, robust, and accurate optimization technique is needed. This paper introduces a new algorithm, Rat Swarm Optimizer (RSO), for obtaining the optimum PV cell and module parameters. The proposed method maintains an adequate balance between the exploration and exploitation phases to overcome premature particle issues. The results obtained using RSO are compared with those of other algorithms, i.e., Particle Swarm Optimization (PSO), Ant Lion Optimizer (ALO), Salp Swarm Algorithm (SSA), Harris Hawks Optimization (HHO), and Grasshopper Optimization (GOA), in this work. The modified one-diode model (MODM) and modified two-diode model (MTDM) are used to analyze the parameters of the mono-crystalline PV cell using the suggested RSO. The obtained findings imply that the parameters estimated by the suggested RSO are more accurate than those calculated by the other algorithms taken into consideration in the paper. The statistical results are compared, and it is clear that RSO is a very accurate, fast, and dependable approach for the parameter estimation of PV cells.

Suggested Citation

  • Manish Kumar Singla & Jyoti Gupta & Parag Nijhawan & Parminder Singh & Nimay Chandra Giri & Essam Hendawi & Mohamed I. Abu El-Sebah, 2023. "Parameter Estimation Techniques for Photovoltaic System Modeling," Energies, MDPI, vol. 16(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6280-:d:1228216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.
    2. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    3. Khanna, Vandana & Das, B.K. & Bisht, Dinesh & Vandana, & Singh, P.K., 2015. "A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 105-113.
    4. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    5. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    6. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    7. Ayang, Albert & Wamkeue, René & Ouhrouche, Mohand & Djongyang, Noël & Essiane Salomé, Ndjakomo & Pombe, Joseph Kessel & Ekemb, Gabriel, 2019. "Maximum likelihood parameters estimation of single-diode model of photovoltaic generator," Renewable Energy, Elsevier, vol. 130(C), pages 111-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Yann-Chang Huang & Pao-Yuan Huang, 2024. "Parameter Estimation and Preliminary Fault Diagnosis for Photovoltaic Modules Using a Three-Diode Model," Energies, MDPI, vol. 17(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    2. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    3. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    4. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    5. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    6. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    7. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    9. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    10. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    11. Vincenzo Stornelli & Mirco Muttillo & Tullio de Rubeis & Iole Nardi, 2019. "A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels," Energies, MDPI, vol. 12(22), pages 1-20, November.
    12. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    13. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    14. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    15. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    16. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    17. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    18. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    19. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    20. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6280-:d:1228216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.