IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1417-d1587123.html
   My bibliography  Save this article

Energy, Exergy Analysis and Sustainability Assessment of a Thermal Power Plant Operating in Various Environmental Conditions Using Real Operational Data

Author

Listed:
  • Aysegul Gungor Celik

    (Department of Mechanical Engineering, Hasan Ferdi Turgutlu Technology Faculty, Manisa Celal Bayar University, Manisa 45400, Turkey)

  • Umut Aydemir

    (Department of Mechanical Engineering, Graduate School of Natural and Applied Sciences, Manisa Celal Bayar University, Manisa 45400, Turkey)

Abstract

It is well known that fossil fuels, especially coal, are still intensively used when considering the distribution of the main energy demand for electricity generation. Efforts to increase and optimise the efficiency of energy production are accelerating as global demand for energy continues to rise. In meeting the world’s energy needs, thermal power plants have an essential role to play. However, it remains an ongoing concern to improve their performance and sustainability. In this study, based on real operating data at varying ambient temperatures, an exergy analysis and an exergy-based sustainability assessment of a 210 MW coal-fired thermal power plant in Turkey are presented. The results of the energy analysis show that 59.01% of the total energy destruction belongs to the boiler and 12.29% to the intermediate-pressure turbine. This means that these are the main components for energy analysis. According to the obtained results of the exergy analysis, the boiler is the main constituent with the maximum exergy destruction, with a rate of 71.00% among the other constituents at the reference temperature of 25 °C. In addition, the relative irreversibility values were calculated as 79.43% in the boiler, 5.42% in the intermediate-pressure turbine (IPT), and 4.22% in the low-pressure turbine (LPT). These are the components that cause the most intensive irreversibility among the other plant components. Moreover, the component that had the greatest exergy efficiency was the ejector, at 98.62%, followed by the high-pressure heater (HPH-3) at 96.00%, the low-pressure heater (LPH-2) at 88.16%, and the high-pressure turbine (HPT) at 86.12%. The sustainability efficiency indicator (SEI) and the exergetic ecological index (ECEI) for the thermal power plant were 2.50 and 0.245, respectively, according to the exergy-based sustainability indices. The boiler, the turbine group, and the condenser are especially significant for increasing plant efficiency due to their high potential for improvement.

Suggested Citation

  • Aysegul Gungor Celik & Umut Aydemir, 2025. "Energy, Exergy Analysis and Sustainability Assessment of a Thermal Power Plant Operating in Various Environmental Conditions Using Real Operational Data," Sustainability, MDPI, vol. 17(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1417-:d:1587123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Topal, Huseyin & Taner, Tolga & Naqvi, Syed Arslan Hassan & Altınsoy, Yelda & Amirabedin, Ehsan & Ozkaymak, Mehmet, 2017. "Exergy analysis of a circulating fluidized bed power plant co-firing with olive pits: A case study of power plant in Turkey," Energy, Elsevier, vol. 140(P1), pages 40-46.
    2. Faustino Moreno-Gamboa & Ana Escudero-Atehortua & César Nieto-Londoño, 2022. "Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
    3. Yang, Yongping & Wang, Ligang & Dong, Changqing & Xu, Gang & Morosuk, Tatiana & Tsatsaronis, George, 2013. "Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant," Applied Energy, Elsevier, vol. 112(C), pages 1087-1099.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    2. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    3. Tan, Qinxue & Fan, Kangqi & Tao, Kai & Zhao, Liya & Cai, Meiling, 2020. "A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations," Energy, Elsevier, vol. 196(C).
    4. Baghsheikhi, Mostafa & Sayyaadi, Hoseyn, 2016. "Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system," Energy, Elsevier, vol. 114(C), pages 868-884.
    5. Açıkkalp, Emin & Caliskan, Hakan & Hong, Hiki & Piao, Hongjie & Seung, Dohyun, 2022. "Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings," Applied Energy, Elsevier, vol. 323(C).
    6. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    7. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    8. Ramos, Vinícius Faria & Pinheiro, Olivert Soares & Ferreira da Costa, Esly & Souza da Costa, Andréa Oliveira, 2019. "A method for exergetic analysis of a real kraft biomass boiler," Energy, Elsevier, vol. 183(C), pages 946-957.
    9. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    10. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    11. Gökgedik, Harun & Yürüsoy, Muhammet & Keçebaş, Ali, 2016. "Improvement potential of a real geothermal power plant using advanced exergy analysis," Energy, Elsevier, vol. 112(C), pages 254-263.
    12. Xin, Shuaishuai & Shen, Jianguo & Liu, Guocheng & Chen, Qinghua & Xiao, Zhou & Zhang, Guodong & Xin, Yanjun, 2020. "High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst," Energy, Elsevier, vol. 196(C).
    13. Yongping Yang & Xiaoen Li & Zhiping Yang & Qing Wei & Ningling Wang & Ligang Wang, 2018. "The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling," Energies, MDPI, vol. 11(4), pages 1-16, March.
    14. Xu, Gang & Xu, Cheng & Yang, Yongping & Fang, Yaxiong & Zhou, Luyao & Zhang, Kai, 2014. "Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant," Applied Energy, Elsevier, vol. 134(C), pages 363-373.
    15. Wang, Bin & Ma, Guangliang & Xu, Dan & Zhang, Le & Zhou, Jiahui, 2018. "Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source," Applied Energy, Elsevier, vol. 228(C), pages 1373-1384.
    16. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    17. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    18. Rocha, Danilo H.D. & Siqueira, Diana S. & Silva, Rogério J., 2021. "Exergoenvironmental analysis for evaluating coal-fired power plants technologies," Energy, Elsevier, vol. 233(C).
    19. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    20. Zhu, Shahong & Zhang, Man & Huang, Yiqun & Wu, Yuxin & Yang, Hairui & Lyu, Junfu & Gao, Xinyu & Wang, Fengjun & Yue, Guangxi, 2019. "Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit," Energy, Elsevier, vol. 173(C), pages 352-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1417-:d:1587123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.