IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p861-d1573353.html
   My bibliography  Save this article

Research on Improving the Horizontal Bearing Performance of Wind Power Pile Foundation with Added Wing Structure

Author

Listed:
  • Huaqing Yang

    (School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China
    Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Zhuhai 519082, China
    Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China)

  • Tianbiao Tan

    (College of Architectural Engineering, Anhui University of Technology, Ma’anshan 243032, China)

  • Jingmin Pan

    (School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China
    Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Zhuhai 519082, China
    Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China)

  • Chengtang Wang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China)

Abstract

The growing recognition of renewable energy’s importance, particularly its role in sustainability, has propelled wind energy to a prominent position. Receiving substantial global policy support due to its unique advantages, wind energy has seen a significant increase in installed turbine capacity. Consequently, expectations for the foundational bearing performance of these turbines have heightened, reflecting the enhanced focus on sustainable energy solutions. In response to these demands, this research introduces an innovative single pile foundation design that aims to elevate bearing capabilities to new heights. This research delves into the horizontal bearing properties of this novel foundation and the stress-strain dynamics of geotechnical materials under loading conditions. To achieve this, we utilize the Gudehus-Bauer subplastic model, specifically tailored for coastal sands within the ABAQUS finite element analysis software. Calibration and verification of the Gudehus-Bauer model’s parameters were meticulously conducted based on laboratory tests focusing on the coastal sands of the Yangtze River basin in China, enabling the development of a precise finite element model for the new single pile foundation in sandy coastal soils. Our findings reveal that this reinforced single pile foundation not only mirrors the horizontal bearing capacity and failure mechanisms of traditional designs but also surpasses them in performance. Numerically, this innovative structure boasts a remarkable 19.34% increase in horizontal ultimate bearing capacity and a minimum of 21.91% reduction in maximum displacement compared to standard single piles. These results underscore the superior horizontal bearing performance of our novel foundation design, which not only enhances structural integrity but also aligns with the principles of sustainable engineering by optimizing material usage, reducing environmental impact, and contributing to the broader goal of promoting renewable energy as a sustainable energy source.

Suggested Citation

  • Huaqing Yang & Tianbiao Tan & Jingmin Pan & Chengtang Wang, 2025. "Research on Improving the Horizontal Bearing Performance of Wind Power Pile Foundation with Added Wing Structure," Sustainability, MDPI, vol. 17(3), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:861-:d:1573353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    2. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    3. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    4. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    5. Ju, Shen-Haw & Huang, Yu-Cheng & Huang, Yin-Yu, 2020. "Study of optimal large-scale offshore wind turbines," Renewable Energy, Elsevier, vol. 154(C), pages 161-174.
    6. Ju-Hyung Lee & Tae-Young Kwak & Youn-Ju Jeong & Joonsang Park & Jae-Hyun Kim, 2023. "A Study on the Lateral Load Capacity of a Novel Hybrid Monopile via a Centrifuge Model Test," Energies, MDPI, vol. 16(21), pages 1-21, October.
    7. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    8. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    9. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    10. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    11. Li, Jiale & Wang, Xuefei & Guo, Yuan & Yu, Xiong Bill, 2020. "The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments," Renewable Energy, Elsevier, vol. 152(C), pages 1109-1120.
    12. Piotr E. Srokosz & Ireneusz Dyka & Marcin Bujko & Marta Bocheńska, 2021. "A Modified Resonant Column Device for In-Depth Analysis of Vibration in Cohesive and Cohesionless Soils," Energies, MDPI, vol. 14(20), pages 1-25, October.
    13. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.
    14. He, Kunpeng & Ye, Jianhong, 2023. "Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way," Renewable Energy, Elsevier, vol. 202(C), pages 453-469.
    15. Li, Jiale & Wang, Xuefei & Yu, Xiong (Bill), 2018. "Use of spatio-temporal calibrated wind shear model to improve accuracy of wind resource assessment," Applied Energy, Elsevier, vol. 213(C), pages 469-485.
    16. Su, Jie & Li, Yu & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan, 2021. "Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion," Energy, Elsevier, vol. 225(C).
    17. Jeongsoo Kim & Yeon-Ju Jeong & Joonsang Park & Ju-Hyung Lee & Taeyoung Kwak & Jae-Hyun Kim, 2022. "Experimental and Finite Element-Based Investigation on Lateral Behaviors of a Novel Hybrid Monopile," Energies, MDPI, vol. 15(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:861-:d:1573353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.