IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp161-174.html
   My bibliography  Save this article

Study of optimal large-scale offshore wind turbines

Author

Listed:
  • Ju, Shen-Haw
  • Huang, Yu-Cheng
  • Huang, Yin-Yu

Abstract

This study investigates optimal large-scale offshore wind turbines (OWT). The blade data for large-scale OWTs is developed using the NREL 5-MW baseline OWT and validated using the DTU 10-MW reference one, where the blade parameters for OWTs ranging from 5 to 17 MW are established. Interpolation, extrapolation, and regression analyses are used to obtain the relationship between the chord length and three blade properties, as well as the relationship between the nacelle mass and rotor diameter. The chord length and rotor radius are then adjusted based on the NREL 5-MW OWT to obtain the required rated power contour figure using FAST. One can use the rated power and critical blade out-of-plane deflection to determine the chord length and rotor radius factors, and the required FAST input files can thus be generated. In this study, 5- to 16-MW OWTs are selected to conduct a support structure analysis and to determine the optimal steel design. Based on the relationship between the rated power with the blade weight and the steel weight of the support structure, OWTs with a rated power ranging from 9 to 15 MW is suitable. The 12-MW one should be optimal, and those over 15 MW are not economic.

Suggested Citation

  • Ju, Shen-Haw & Huang, Yu-Cheng & Huang, Yin-Yu, 2020. "Study of optimal large-scale offshore wind turbines," Renewable Energy, Elsevier, vol. 154(C), pages 161-174.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:161-174
    DOI: 10.1016/j.renene.2020.02.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    2. Jijian Lian & Yaya Jia & Haijun Wang & Fang Liu, 2016. "Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction," Energies, MDPI, vol. 9(8), pages 1-21, August.
    3. Gentils, Theo & Wang, Lin & Kolios, Athanasios, 2017. "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm," Applied Energy, Elsevier, vol. 199(C), pages 187-204.
    4. Mo, Wenwei & Li, Deyuan & Wang, Xianneng & Zhong, Cantang, 2015. "Aeroelastic coupling analysis of the flexible blade of a wind turbine," Energy, Elsevier, vol. 89(C), pages 1001-1009.
    5. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
    6. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    7. Noyes, Carlos & Qin, Chao & Loth, Eric, 2018. "Pre-aligned downwind rotor for a 13.2 MW wind turbine," Renewable Energy, Elsevier, vol. 116(PA), pages 749-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    2. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    3. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    4. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    5. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    6. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    7. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    8. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    10. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    11. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    12. Yao, Shulong & Griffith, D. Todd & Chetan, Mayank & Bay, Christopher J. & Damiani, Rick & Kaminski, Meghan & Loth, Eric, 2020. "A gravo-aeroelastically scaled wind turbine rotor at field-prototype scale with strict structural requirements," Renewable Energy, Elsevier, vol. 156(C), pages 535-547.
    13. Cong, Shuai & James Hu, Sau-Lon & Li, Hua-Jun, 2022. "Using incomplete complex modes for model updating of monopiled offshore wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 522-534.
    14. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    15. Noyes, Carlos & Loth, Eric & Martin, Dana & Johnson, Kathryn & Ananda, Gavin & Selig, Michael, 2020. "Extreme-scale load-aligning rotor: To hinge or not to hinge?," Applied Energy, Elsevier, vol. 257(C).
    16. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    18. Al-Sanad, Shaikha & Wang, Lin & Parol, Jafarali & Kolios, Athanasios, 2021. "Reliability-based design optimisation framework for wind turbine towers," Renewable Energy, Elsevier, vol. 167(C), pages 942-953.
    19. Ge, Mingwei & Sun, Haitao & Meng, Hang & Li, Xintao, 2024. "An improved B-L model for dynamic stall prediction of rough-surface airfoils," Renewable Energy, Elsevier, vol. 226(C).
    20. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:161-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.