IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1185-d1581851.html
   My bibliography  Save this article

Creation of Wind Speed Maps and Determination of Wind Energy Potential with Geographic Information Systems: The Case of Kırklareli Province, Türkiye

Author

Listed:
  • Kamil Karataş

    (Department of Geomatics, Engineering Faculty, Aksaray University, Aksaray 68100, Türkiye)

  • Celal Bıçakcı

    (Department of Architecture and Urban Planning, Osmaniye Vocational School, Osmaniye Korkut Ata University, Osmaniye 80000, Türkiye)

Abstract

The intensive use of fossil fuels for energy production harms the environment. The adoption of sustainable energy systems can reduce the damage. Wind energy is one of the most widely used renewable sources. The most important problem in establishing new wind power plants (WPPs) is estimating the wind energy potential (WEP) in potential installation locations where there are no measured data. Many geographic information system (GIS)-based studies have been conducted on this subject. In this study, based on the technical specifications of a wind turbine selected for the Kırklareli Province of Türkiye, wind speed maps at 125 m height were created using many station points with known locations and wind speeds and the WEP of Kırklareli was calculated. In addition, the WEP map of Kırklareli was created by first determining the areas where WPPs cannot be installed and creating the wind speed map. After removing exclusion areas where wind turbines cannot be installed, the wind speeds at 125 m ranged between 3.12 m/s and 8.51 m/s. The wind speed was found to be higher in the south of the province, and the total WEP in areas with wind speeds higher than 6 m/sec was 6628.21 MW.

Suggested Citation

  • Kamil Karataş & Celal Bıçakcı, 2025. "Creation of Wind Speed Maps and Determination of Wind Energy Potential with Geographic Information Systems: The Case of Kırklareli Province, Türkiye," Sustainability, MDPI, vol. 17(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1185-:d:1581851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
    2. Cunden, Tyagaraja S.M. & Doorga, Jay & Lollchund, Michel R. & Rughooputh, Soonil D.D.V., 2020. "Multi-level constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS," Energy, Elsevier, vol. 211(C).
    3. Tar, Károly, 2008. "Some statistical characteristics of monthly average wind speed at various heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1712-1724, August.
    4. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    5. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    6. Adalberto Ospino Castro & Carlos Robles-Algarín & Luis Hernández-Callejo & Yecid Muñoz Maldonado & Amanda Mangones Cordero, 2023. "Feasibility Analysis of Offshore Wind Power Projects in the Caribbean Region of Colombia: A Case Study Using FAHP–GIS," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    7. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    2. Ayan Pierre Abdi & Atilla Damci & Harun Turkoglu & V.S. Ozgur Kirca & Sevilay Demirkesen & Emel Sadikoglu & Adil Enis Arslan, 2025. "A Geographic Information System-Based Integrated Multi-Criteria Decision-Support System for the Selection of Wind Farm Sites: The Case of Djibouti," Sustainability, MDPI, vol. 17(6), pages 1-29, March.
    3. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    4. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    5. Dehghan, Hassan & Pourfayaz, Fathollah & Shahsavari, Ardavan, 2022. "Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system," Renewable Energy, Elsevier, vol. 198(C), pages 189-199.
    6. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    7. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).
    9. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    10. Miyake, Saori & Teske, Sven & Rispler, Jonathan & Feenstra, Maartje, 2024. "Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    11. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    12. Dimitra G. Vagiona, 2025. "The Use of Comparative Multi-Criteria Analysis Methods to Evaluate Criteria Weighting in Assessments of Onshore Wind Farm Projects," Energies, MDPI, vol. 18(4), pages 1-19, February.
    13. Dimitriou, Iason C. & Sarmas, Elissaios & Trachanas, Georgios P. & Marinakis, Vangelis & Doukas, Haris, 2025. "Multi-Criteria GIS-based offshore wind farm site selection: Case study in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    14. Ayan Pierre Abdi & Atilla Damci & Ozgur Kirca & Harun Turkoglu & David Arditi & Sevilay Demirkesen & Mustafa Korkmaz & Adil Enis Arslan, 2024. "A Spatial Decision-Support System for Wind Farm Site Selection in Djibouti," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    15. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    16. Salih, Abdelrahim & Hassaballa, Abdalhaleem A. & Eltawil, Mohamed A., 2024. "Integrating spatial data and multi-criteria analysis for wind farm suitability mapping in eastern Saudi Arabia," Energy, Elsevier, vol. 301(C).
    17. Tsani, Tsamara & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Quantifying social factors for onshore wind planning – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    18. Yechennan Peng & Hossein Azadi & Liang (Emlyn) Yang & Jürgen Scheffran & Ping Jiang, 2022. "Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach," Energies, MDPI, vol. 15(6), pages 1-20, March.
    19. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    20. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1185-:d:1581851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.