IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9635-d1514603.html
   My bibliography  Save this article

A Spatial Decision-Support System for Wind Farm Site Selection in Djibouti

Author

Listed:
  • Ayan Pierre Abdi

    (Department of Civil Engineering, Istanbul Technical University, Istanbul 34469, Turkey
    The Africa Center of Excellence for Logistics and Transport (CEALT), University of Djibouti, Djibouti 77000, Djibouti)

  • Atilla Damci

    (Department of Civil Engineering, Istanbul Technical University, Istanbul 34469, Turkey)

  • Ozgur Kirca

    (Department of Civil Engineering, Istanbul Technical University, Istanbul 34469, Turkey)

  • Harun Turkoglu

    (Department of Civil Engineering, Istanbul Technical University, Istanbul 34469, Turkey)

  • David Arditi

    (Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA)

  • Sevilay Demirkesen

    (Department of Civil Engineering, Gebze Technical University, Kocaeli 41400, Turkey)

  • Mustafa Korkmaz

    (Department of Civil Engineering, Igdir University, Igdir 76000, Turkey)

  • Adil Enis Arslan

    (Department of Geomatics, Istanbul Technical University, Istanbul 34469, Turkey)

Abstract

The escalating energy demand in Djibouti requires the investigation of renewable energy sources, with wind energy emerging as a promising solution. To ensure the long-term efficiency and sustainability of wind energy projects, it is imperative to determine suitable sites for wind farm construction. When selecting a suitable site for a wind farm, there are multiple criteria to consider, such as wind velocity, ground slope, and distance to urban areas. Nevertheless, the current body of the literature reveals that no previous research has been conducted to explore an approach which involves multiple criteria to determine suitable sites for wind farms in Djibouti, as opposed to solely considering wind energy potential. This study proposes a spatial decision-support system to address the research gap in the selection of wind farm sites. Seven criteria are simultaneously evaluated in this system, including wind velocity, changes in wind direction, ground slope, distance to urban areas, distance to road network, distance to energy transmission networks, and land use. The CRITIC (Criteria Importance Through Intercriteria Correlation) method is used to objectively calculate the weights of the criteria. According to the results of performing the CRITIC method, wind velocity and distance to energy transmission networks were determined to be the most important criteria, while ground slope and land use were determined to be the least important criteria in comparison to others. A final suitability map showing the possible locations of wind farms in Djibouti was generated by considering the said criteria and their respective weights. The final suitability map reveals that the most suitable sites for the development of wind farms in Djibouti are located in the northeastern area between Obock and Khor-Angor, the southeastern area encompassing Lakes Ghoubet and Bara, and the southwestern area stretching from Lake Abbe to the Hanlé region. Using the proposed spatial decision-support system, decision makers would be empowered to make strategic and well-informed decisions when selecting the most suitable site for a wind farm in Djibouti.

Suggested Citation

  • Ayan Pierre Abdi & Atilla Damci & Ozgur Kirca & Harun Turkoglu & David Arditi & Sevilay Demirkesen & Mustafa Korkmaz & Adil Enis Arslan, 2024. "A Spatial Decision-Support System for Wind Farm Site Selection in Djibouti," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9635-:d:1514603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ateekh Ur Rehman & Mustufa Haider Abidi & Usama Umer & Yusuf Siraj Usmani, 2019. "Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
    2. Lamy, Julian V. & Jaramillo, Paulina & Azevedo, Inês L. & Wiser, Ryan, 2016. "Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region," Energy Policy, Elsevier, vol. 96(C), pages 341-350.
    3. Dimitris Ioannidis & Dimitra G. Vagiona, 2024. "Optimal Wind Farm Siting Using a Fuzzy Analytic Hierarchy Process: Evaluating the Island of Andros, Greece," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    5. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    6. Assowe Dabar, Omar & Awaleh, Mohamed Osman & Kirk-Davidoff, Daniel & Olauson, Jon & Söder, Lennart & Awaleh, Said Ismael, 2019. "Wind resource assessment and economic analysis for electricity generation in three locations of the Republic of Djibouti," Energy, Elsevier, vol. 185(C), pages 884-894.
    7. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    8. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    9. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    10. Adalberto Ospino Castro & Carlos Robles-Algarín & Luis Hernández-Callejo & Yecid Muñoz Maldonado & Amanda Mangones Cordero, 2023. "Feasibility Analysis of Offshore Wind Power Projects in the Caribbean Region of Colombia: A Case Study Using FAHP–GIS," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    11. Chih-Chun Kung & Li-Jiun Chen & Tsung-Ju Lee & Xianling Jiang & Ruiqi Lin, 2019. "Wind power potential for energy sustainability and climate change mitigation: A case study in Taiwan," Energy & Environment, , vol. 30(2), pages 304-321, March.
    12. Alireza Alinezhad & Javad Khalili, 2019. "New Methods and Applications in Multiple Attribute Decision Making (MADM)," International Series in Operations Research and Management Science, Springer, number 978-3-030-15009-9, December.
    13. Pillot, Benjamin & Al-Kurdi, Nadeem & Gervet, Carmen & Linguet, Laurent, 2020. "An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale," Applied Energy, Elsevier, vol. 260(C).
    14. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Badi, Abdullah, 2012. "Wind farm land suitability indexing using multi-criteria analysis," Renewable Energy, Elsevier, vol. 44(C), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    2. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    3. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    4. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    5. Nagababu, Garlapati & Puppala, Harish & Pritam, Kocherlakota & Kantipudi, MVV Prasad, 2022. "Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India," Energy, Elsevier, vol. 248(C).
    6. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    7. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    8. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    9. Dimitris Ioannidis & Dimitra G. Vagiona, 2024. "Optimal Wind Farm Siting Using a Fuzzy Analytic Hierarchy Process: Evaluating the Island of Andros, Greece," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    10. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    12. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    13. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    14. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    15. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    16. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    17. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    18. Dehghan, Hassan & Pourfayaz, Fathollah & Shahsavari, Ardavan, 2022. "Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system," Renewable Energy, Elsevier, vol. 198(C), pages 189-199.
    19. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    20. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9635-:d:1514603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.