IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p552-d1565579.html
   My bibliography  Save this article

From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings

Author

Listed:
  • Luciana Chaves Weba

    (Department of Civil Engineering, Morro do Cruzeiro University Campus, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil)

  • Júlia Maria Medalha Resende Oliveira

    (Department of Urban Engineering, Morro do Cruzeiro University Campus, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil)

  • Alberto José Corrêa de Souza

    (Department of Civil Engineering, Morro do Cruzeiro University Campus, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil)

  • Ludimila Gomes Antunes

    (Department of Architecture and Urbanism, Morro do Cruzeiro University Campus, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil)

  • José Maria Franco de Carvalho

    (Department of Civil Engineering, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil)

  • Wanna Carvalho Fontes

    (Department of Urban Engineering, Morro do Cruzeiro University Campus, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil)

Abstract

This study investigates the use of iron ore tailings (IOTs) as recycled aggregates in segmental blocks, focusing on technical performance, CO 2 emissions, and embodied energy using the cradle-to-gate approach. IOTs replaced fine aggregates in concrete at 25%, 50%, and 75% by volume, achieving compressive strengths of 16.23 MPa, 10.02 MPa, and 3.93 MPa, respectively. Raw material production accounted for 98% of CO 2 emissions and 86% of embodied energy. Producing blocks at mining sites offered limited environmental benefits due to longer transport distances. Despite this, the results showed a 6% reduction in CO 2 emissions and a 35% improvement in mechanical–environmental performance (CO 2 emissions weighted by compressive strength) compared to traditional concrete. These findings underscore the potential of IOT-based concrete for segmental block production.

Suggested Citation

  • Luciana Chaves Weba & Júlia Maria Medalha Resende Oliveira & Alberto José Corrêa de Souza & Ludimila Gomes Antunes & José Maria Franco de Carvalho & Wanna Carvalho Fontes, 2025. "From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings," Sustainability, MDPI, vol. 17(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:552-:d:1565579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
    2. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    3. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    4. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    5. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    6. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Francesco Montana & Kai Kanafani & Kim B. Wittchen & Harpa Birgisdottir & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino, 2020. "Multi-Objective Optimization of Building Life Cycle Performance. A Housing Renovation Case Study in Northern Europe," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    8. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    9. Marco Scherz & Antonija Ana Wieser & Alexander Passer & Helmuth Kreiner, 2022. "Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    10. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    11. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    12. Carlos Herce & Chiara Martini & Claudia Toro & Enrico Biele & Marcello Salvio, 2024. "Energy Efficiency Policies for Small and Medium-Sized Enterprises: A Review," Sustainability, MDPI, vol. 16(3), pages 1-34, January.
    13. Ehsan Kamel & Francesco Pittau & Laura Mora Dal Verme & Piergiorgio Scatigna & Giuliana Iannaccone, 2024. "A Parametric Integrated Design Approach for Life Cycle Zero-Carbon Buildings," Sustainability, MDPI, vol. 16(5), pages 1-22, February.
    14. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    15. Geeth Jayathilaka & Niraj Thurairajah & Akila Rathnasinghe, 2023. "Digital Data Management Practices for Effective Embodied Carbon Estimation: A Systematic Evaluation of Barriers for Adoption in the Building Sector," Sustainability, MDPI, vol. 16(1), pages 1-23, December.
    16. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    17. Olga Beatrice Carcassi & Pietro Minotti & Guillaume Habert & Ingrid Paoletti & Sophie Claude & Francesco Pittau, 2022. "Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation," Sustainability, MDPI, vol. 14(3), pages 1-23, January.
    18. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    19. Els Van de moortel & Karen Allacker & Frank De Troyer & Erik Schoofs & Luc Stijnen, 2022. "Dynamic Versus Static Life Cycle Assessment of Energy Renovation for Residential Buildings," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    20. Plank, Christina & Liehr, Stefan & Hummel, Diana & Wiedenhofer, Dominik & Haberl, Helmut & Görg, Christoph, 2021. "Doing more with less: Provisioning systems and the transformation of the stock-flow-service nexus," Ecological Economics, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:552-:d:1565579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.