IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7807-d417029.html
   My bibliography  Save this article

Multi-Objective Optimization of Building Life Cycle Performance. A Housing Renovation Case Study in Northern Europe

Author

Listed:
  • Francesco Montana

    (Department of Engineering, University of Palermo, 90133 Palermo, Italy
    These authors contributed equally to this work.)

  • Kai Kanafani

    (Department of the Built Environment, Aalborg University, 2740 Copenhagen, Denmark
    These authors contributed equally to this work.)

  • Kim B. Wittchen

    (Department of the Built Environment, Aalborg University, 2740 Copenhagen, Denmark)

  • Harpa Birgisdottir

    (Department of the Built Environment, Aalborg University, 2740 Copenhagen, Denmark)

  • Sonia Longo

    (Department of Engineering, University of Palermo, 90133 Palermo, Italy)

  • Maurizio Cellura

    (Department of Engineering, University of Palermo, 90133 Palermo, Italy)

  • Eleonora Riva Sanseverino

    (Department of Engineering, University of Palermo, 90133 Palermo, Italy)

Abstract

While the operational energy use of buildings is often regulated in current energy saving policies, their embodied greenhouse gas emissions still have a considerable mitigation potential. The study aims at developing a multi-objective optimization method for design and renovation of buildings incorporating the operational and embodied energy demands, global warming potential, and costs as objective functions. The optimization method was tested on the renovation of an apartment building in Denmark, mainly focusing envelope improvements as roof and exterior wall insulation and windows. Cellulose insulation has been the predominant result, together with fiber cement or aluminum-based cladding and 2-layered glazing. The annual energy demand has been reduced from 166.4 to a range between 76.5 and 83.7 kWh/(m 2 y) in the optimal solutions. The fact that the legal requirements of 70 kWh/(m 2 y) are nearly met without building service improvements indicates that energy requirements can be fulfilled without compromising greenhouse gas emissions and cost. Since the method relies on standard national performance reporting tools, the authors believe that this study is a preliminary step towards more cost-efficient and low-carbon building renovations by utilizing multi-optimization techniques.

Suggested Citation

  • Francesco Montana & Kai Kanafani & Kim B. Wittchen & Harpa Birgisdottir & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino, 2020. "Multi-Objective Optimization of Building Life Cycle Performance. A Housing Renovation Case Study in Northern Europe," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7807-:d:417029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    2. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    2. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    3. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
    4. Mustafa S. Al-Tekreeti & Salwa M. Beheiry & Vian Ahmed, 2022. "Commitment Indicators for Tracking Sustainable Design Decisions in Construction Projects," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    5. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    7. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    8. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    9. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    10. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    12. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    13. Marco Scherz & Antonija Ana Wieser & Alexander Passer & Helmuth Kreiner, 2022. "Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    14. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    15. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    16. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    17. Carlos Herce & Chiara Martini & Claudia Toro & Enrico Biele & Marcello Salvio, 2024. "Energy Efficiency Policies for Small and Medium-Sized Enterprises: A Review," Sustainability, MDPI, vol. 16(3), pages 1-34, January.
    18. Rocha, Helder R.O. & Fiorotti, Rodrigo & Louzada, Danilo M. & Silvestre, Leonardo J. & Celeste, Wanderley C. & Silva, Jair A.L., 2024. "Net Zero Energy cost Building system design based on Artificial Intelligence," Applied Energy, Elsevier, vol. 355(C).
    19. Ehsan Kamel & Francesco Pittau & Laura Mora Dal Verme & Piergiorgio Scatigna & Giuliana Iannaccone, 2024. "A Parametric Integrated Design Approach for Life Cycle Zero-Carbon Buildings," Sustainability, MDPI, vol. 16(5), pages 1-22, February.
    20. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7807-:d:417029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.