IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p142-d1554941.html
   My bibliography  Save this article

Understanding Urban Cooling of Blue–Green Infrastructure: A Review of Spatial Data and Sustainable Planning Optimization Methods for Mitigating Urban Heat Islands

Author

Listed:
  • Grzegorz Budzik

    (Department of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24, 50-363 Wrocław, Poland)

  • Marta Sylla

    (Institute of Spatial Management, Wroclaw University of Environmental and Life Sciences, Grunwaldzka Str. 55, 50-357 Wrocław, Poland)

  • Tomasz Kowalczyk

    (Department of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24, 50-363 Wrocław, Poland)

Abstract

Many studies in the literature have assessed the blue–green infrastructure (BGI) characteristics that influence its cooling potential for sustainable urban development. Common assessment methods include satellite remote sensing, numerical simulations, and field measurements, each defining different cooling efficiency indicators. This methodological diversity creates uncertainties in optimizing BGI management. To address this, a literature review was conducted using Google Scholar, Web of Science, and Scopus, examining how the BGI cools urban space, which spatial data and methods are most effective, which methodological differences may affect the results, and what the current research gaps and innovative future directions are. The results suggest that remote sensing is ideal for large-scale BGI comparisons, numerical simulations for local development scenarios, and field measurements for assessing conditions closest to residents. Maximum BGI cooling intensity averages show 4 °C from remote sensing, 3 °C from field measurements, and 2 °C from numerical simulations. Differences in conclusions may arise from differences in the data resolution, model scale, BGI delineation method, and cooling range calculation. The key BGI characteristics include object size, vegetation fraction, foliage density, and spatial connectivity. Future research should prioritize the integration of the different methods, BGI shape complexity effectiveness assessment, and effects of urban morphology on evaluating BGI characteristics’ effectiveness, and explore digital twin technology for BGI management optimization. This study integrates key information on BGI’s cooling capabilities, serving as a useful resource for both practitioners and researchers to support resilient city development.

Suggested Citation

  • Grzegorz Budzik & Marta Sylla & Tomasz Kowalczyk, 2024. "Understanding Urban Cooling of Blue–Green Infrastructure: A Review of Spatial Data and Sustainable Planning Optimization Methods for Mitigating Urban Heat Islands," Sustainability, MDPI, vol. 17(1), pages 1-46, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:142-:d:1554941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Kotz & Anders Levermann & Leonie Wenz, 2024. "The economic commitment of climate change," Nature, Nature, vol. 628(8008), pages 551-557, April.
    2. T. Nochta & L. Wan & J. M. Schooling & A. K. Parlikad, 2021. "A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins," Journal of Urban Technology, Taylor & Francis Journals, vol. 28(1-2), pages 263-287, April.
    3. Ehab Shahat & Chang T. Hyun & Chunho Yeom, 2021. "City Digital Twin Potentials: A Review and Research Agenda," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    4. Edoardo Marcucci & Valerio Gatta & Michela Le Pira & Lisa Hansson & Svein Bråthen, 2020. "Digital Twins: A Critical Discussion on Their Potential for Supporting Policy-Making and Planning in Urban Logistics," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    5. Rong Huang & Mei Yang & Guohua Lin & Xiaoyan Ma & Xuan Wang & Qian Huang & Tian Zhang, 2022. "Cooling Effect of Green Space and Water on Urban Heat Island and the Perception of Residents: A Case Study of Xi’an City," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    6. Xinyi Qiu & Sung-Ho Kil & Hyun-Kil Jo & Chan Park & Wonkyong Song & Yun Eui Choi, 2023. "Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China," IJERPH, MDPI, vol. 20(3), pages 1-14, February.
    7. Renato Monteiro & José C. Ferreira & Paula Antunes, 2020. "Green Infrastructure Planning Principles: An Integrated Literature Review," Land, MDPI, vol. 9(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casey R. Corrado & Suzanne M. DeLong & Emily G. Holt & Edward Y. Hua & Andreas Tolk, 2022. "Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    2. Juan Manuel Núñez & Andrea Santamaría & Leonardo Avila & D. A. Perez-De La Mora, 2024. "Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City," Land, MDPI, vol. 13(10), pages 1-16, October.
    3. Xifan Chen & Lihua Xu & Rusong Zhu & Qiwei Ma & Yijun Shi & Zhangwei Lu, 2022. "Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority," Land, MDPI, vol. 11(6), pages 1-17, June.
    4. Claire Daniel & Christopher Pettit, 2022. "Charting the past and possible futures of planning support systems: Results of a citation network analysis," Environment and Planning B, , vol. 49(7), pages 1875-1892, September.
    5. Sanja Gašparović & Ana Sopina & Anton Zeneral, 2022. "Impacts of Zagreb’s Urban Development on Dynamic Changes in Stream Landscapes from Mid-Twentieth Century," Land, MDPI, vol. 11(5), pages 1-25, May.
    6. Timothé Beaufils & Joschka Wanner & Leonie Wenz, 2024. "The Potential of Carbon Border Adjustments to Foster Climate Cooperation," CESifo Working Paper Series 11429, CESifo.
    7. Yadi Zhao & Lei Yan & Jian Wu & Ximing Song, 2023. "Design and Implementation of a Digital Twin System for Log Rotary Cutting Optimization," Future Internet, MDPI, vol. 16(1), pages 1-14, December.
    8. Meierrieks, Daniel & Stadelmann, David, 2024. "Is temperature adversely related to economic development? Evidence on the short-run and the long-run links from sub-national data," Energy Economics, Elsevier, vol. 136(C).
    9. Francesco Pinna & Valeria Saiu, 2021. "Greenways as Integrated Systems: A Proposal for Planning and Design Guidelines Based on Case Studies Evaluation," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    10. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    11. Vittorio Astarita & Giuseppe Guido & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas, 2024. "Risk Reduction in Transportation Systems: The Role of Digital Twins According to a Bibliometric-Based Literature Review," Sustainability, MDPI, vol. 16(8), pages 1-26, April.
    12. Kai Lessmann & Friedemann Gruner & Matthias Kalkuhl & Ottmar Edenhofer, 2024. "Emissions Trading with Clean-up Certificates: Deterring Mitigation or Increasing Ambition?," CEPA Discussion Papers 79, Center for Economic Policy Analysis.
    13. Germán Vargas-Cuervo & Yolanda Teresa Hernández-Peña & Carlos Alfonso Zafra-Mejía, 2024. "Challenges for Sustainable Urban Planning: A Spatiotemporal Analysis of Complex Landslide Risk in a Latin American Megacity," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
    14. Moshood, Taofeeq D. & Rotimi, James OB. & Shahzad, Wajiha & Bamgbade, J.A., 2024. "Infrastructure digital twin technology: A new paradigm for future construction industry," Technology in Society, Elsevier, vol. 77(C).
    15. Joel Manifold & Suresh Renukappa & Subashini Suresh & Panagiotis Georgakis & Gamage Rashini Perera, 2024. "Dual Transition of Net Zero Carbon and Digital Transformation: Case Study of UK Transportation Sector," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    16. Maria Stella Lux, 2024. "Networks and Fragments: An Integrative Approach for Planning Urban Green Infrastructures in Dense Urban Areas," Land, MDPI, vol. 13(11), pages 1-24, November.
    17. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    18. Sudeshna Haldar & Priyanka Dey, 2024. "Towards UHI mitigation adopting park cooling effect: Two- decade literature review for a theoretical framework," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-25, December.
    19. Kılkış, Şiir, 2024. "Urban emissions and land use efficiency scenarios for avoiding increments of global warming," Energy, Elsevier, vol. 307(C).
    20. Matt Burke & Matthew Agarwala & Patrycja Klusak & Kamiar Mohaddes, 2024. "Climate Policy and Sovereign Debt: The Impact of Transition Scenarios on Sovereign Creditworthiness," CAMA Working Papers 2024-73, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:142-:d:1554941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.