IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3640-d1383656.html
   My bibliography  Save this article

Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China

Author

Listed:
  • Chunbo Wei

    (Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
    Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China)

  • Yanyu Sha

    (Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
    Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China)

  • Yongwei Hou

    (Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
    Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China)

  • Jiaqi Li

    (Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
    Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China)

  • Yongli Qu

    (Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
    Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China)

Abstract

To further study the spatial distribution and dynamic evolution of carbon emissions from animal husbandry in Shandong Province, the panel data of 16 prefecture-level cities in Shandong Province from 2001 to 2022 were used to measure the carbon emissions of animal husbandry and the carbon emission intensity of animal husbandry. Based on the combination of space, kernel density estimation, and LMDI decomposition model, the spatial and temporal evolution of carbon emissions from animal husbandry in Shandong Province and its driving factors were investigated. The results show that: (1) The total amount of animal husbandry carbon emissions in Shandong Province showed a fluctuating downward trend, with a decrease of 10.10% during the investigation period, showing a peripheral-agglomeration distribution pattern. The carbon emission intensity showed a gradual downward trend, with an average annual decline of 7.47%, showing stepped distribution characteristics of high in the west and low in the east. (2) The difference in carbon emissions of animal husbandry among cities in Shandong Province increased first and then decreased, and the growth distribution was basically in the form of “bimodal”, showing a polarization pattern. (3) The intensity effect has the most obvious inhibitory effect on the carbon emission of animal husbandry; the effect of agricultural structure changes from a promoting effect to an inhibiting effect. The inhibitory effect of the industrial structure effect is second only to the intensity effect; the economic effect has the greatest promoting effect; and the promotion effect of the population size effect is small.

Suggested Citation

  • Chunbo Wei & Yanyu Sha & Yongwei Hou & Jiaqi Li & Yongli Qu, 2024. "Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3640-:d:1383656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Bangzhu & Wang, Kefan & Chevallier, Julien & Wang, Ping & Wei, Yi-Ming, 2015. "Can China achieve its carbon intensity target by 2020 while sustaining economic growth?," Ecological Economics, Elsevier, vol. 119(C), pages 209-216.
    2. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    2. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    3. Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2020. "Changes in Dairy Products Value Chain in Georgia," Sustainability, MDPI, vol. 12(15), pages 1-29, July.
    4. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    5. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    6. Adam A. Prag & Christian B. Henriksen, 2020. "Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    7. Xavier Simon & Damián Copena & David Pérez-Neira, 2023. "Assessment of the diet-environment-health-cost quadrilemma in public school canteens. an LCA case study in Galicia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12543-12567, November.
    8. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    9. Peter Horton, 2017. "We need radical change in how we produce and consume food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1323-1327, December.
    10. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    11. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    12. Jindřich Špička & Zdeňka Náglová, 2022. "Consumer segmentation in the meat market - The case study of Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(2), pages 68-77.
    13. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    14. Bazoche, Pascale & Guinet, Nicolas & Poret, Sylvaine & Teyssier, Sabrina, 2023. "Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices," Food Policy, Elsevier, vol. 116(C).
    15. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    16. Melanie Speck & Katrin Bienge & Lynn Wagner & Tobias Engelmann & Sebastian Schuster & Petra Teitscheid & Nina Langen, 2020. "Creating Sustainable Meals Supported by the NAHGAST Online Tool—Approach and Effects on GHG Emissions and Use of Natural Resources," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    17. Springmann, Marco & Mason-D'Croz, Daniel & Robinson, Sherman & Wiebe, Keith & Scarborough, Peter, 2016. "The health co-benefits of a global greenhouse-gas tax on food," Conference papers 332766, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. repec:ags:aaea22:335681 is not listed on IDEAS
    19. Infante-Amate, Juan & Aguilera, Eduardo & de Molina, Manuel González, 2018. "Energy transition in Agri-food systems. Structural change, drivers and policy implications (Spain, 1960–2010)," Energy Policy, Elsevier, vol. 122(C), pages 570-579.
    20. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    21. Patricia Eustachio Colombo & Emma Patterson & Liselotte Schäfer Elinder & Anna Karin Lindroos & Ulf Sonesson & Nicole Darmon & Alexandr Parlesak, 2019. "Optimizing School Food Supply: Integrating Environmental, Health, Economic, and Cultural Dimensions of Diet Sustainability with Linear Programming," IJERPH, MDPI, vol. 16(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3640-:d:1383656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.