IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v566y2021ics0378437120309122.html
   My bibliography  Save this article

Quantum Cournot duopoly game with isoelastic demand function

Author

Listed:
  • Shi, Lian
  • Xu, Feng
  • Chen, Yongtai

Abstract

This paper studies the quantum Cournot duopoly games with isoelastic demand function and unequal marginal costs by using the Li–Du–Massar and the Frąckiewicz quantum schemes. The influences of relative marginal cost and degree of quantum entanglement on the optimal profits of the two players are analyzed theoretically and illustrated numerically. The results show that the profit of one player increase, but the profit of the other player decreases with increasing the relative marginal cost for any fixed degree of quantum entanglement. The profits of two players both increase with increasing the degree of quantum entanglement as the relative marginal cost is in a certain range.

Suggested Citation

  • Shi, Lian & Xu, Feng & Chen, Yongtai, 2021. "Quantum Cournot duopoly game with isoelastic demand function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  • Handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309122
    DOI: 10.1016/j.physa.2020.125614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309122
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso-Sanz, Ramón, 2019. "Simulation of the quantum Cournot duopoly game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Piotrowski, E.W & Sładkowski, J, 2002. "Quantum market games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 208-216.
    3. Piotrowski, Edward W. & Sładkowski, Jan, 2002. "Quantum bargaining games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 391-401.
    4. Nicolas Brunner & Noah Linden, 2013. "Connection between Bell nonlocality and Bayesian game theory," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    5. Makowski, Marcin & Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2017. "Profit intensity and cases of non-compliance with the law of demand/supply," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 53-59.
    6. Tramontana, Fabio, 2010. "Heterogeneous duopoly with isoelastic demand function," Economic Modelling, Elsevier, vol. 27(1), pages 350-357, January.
    7. Angelini, Natascia & Dieci, Roberto & Nardini, Franco, 2009. "Bifurcation analysis of a dynamic duopoly model with heterogeneous costs and behavioural rules," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3179-3196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Bo & Ahmadi, Atefeh & Mehrabbeik, Mahtab & Rajagopal, Karthikeyan & He, Shaobo & Jafari, Sajad, 2022. "Expanding the duopoly Stackelberg game with marginal costs into a multipoly game with lowering the burden of mathematical calculations: a numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Li, Bo & Liang, Houjun & Shi, Lian & He, Qizhi, 2022. "Complex dynamics of Kopel model with nonsymmetric response between oligopolists," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Wang, Chun & Pi, Jinxiu & Zhou, Die & Tang, Wei & Yang, Guanghui, 2023. "Dynamics of n-person Cournot games with asymmetric information and heterogeneous expectations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    4. Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotrowski, Edward W. & Sładkowski, Jan, 2005. "Quantum diffusion of prices and profits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 185-195.
    2. Emmanuel Haven, 2008. "Private Information and the ‘Information Function’: A Survey of Possible Uses," Theory and Decision, Springer, vol. 64(2), pages 193-228, March.
    3. Gian Italo Bischi & Fabio Lamantia & Davide Radi, 2018. "Evolutionary oligopoly games with heterogeneous adaptive players," Chapters, in: Luis C. Corchón & Marco A. Marini (ed.), Handbook of Game Theory and Industrial Organization, Volume I, chapter 12, pages 343-370, Edward Elgar Publishing.
    4. Jan Sladkowski & Edward W. Piotrowski, "undated". "Risk in Quantum Market Games (in Polish)," Departmental Working Papers 117pl, University of Bialtystok, Department of Theoretical Physics.
    5. Lorenzo Cerboni Baiardi & Ahmad K. Naimzada, 2018. "An evolutionary model with best response and imitative rules," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 313-333, November.
    6. Sładkowski, Jan, 2003. "Giffen paradoxes in quantum market games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 234-240.
    7. Piotrowski, Edward W. & Sładkowski, Jan, 2008. "Quantum auctions: Facts and myths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3949-3953.
    8. Ahmad Naimzada & Fabio Tramontana, 2011. "Double route to chaos in an heterogeneous triopoly game," Quaderni di Dipartimento 149, University of Pavia, Department of Economics and Quantitative Methods.
    9. Edward W. Piotrowski & Jan Sladkowski, "undated". "An Invitation to Quantum Game Theory," Departmental Working Papers 15, University of Bialtystok, Department of Theoretical Physics.
    10. Cerboni Baiardi, Lorenzo & Naimzada, Ahmad K., 2018. "An oligopoly model with best response and imitation rules," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 193-205.
    11. Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2003. "Interference of quantum market strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 516-528.
    12. Zhang, Ming & Wang, Guanghui & Xu, Jin & Qu, Cunquan, 2020. "Dynamic contest model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    13. Peng, Yu & Lu, Qian & Xiao, Yue, 2016. "A dynamic Stackelberg duopoly model with different strategies," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 128-134.
    14. Edward W. Piotrowski & Jan Sladkowski, "undated". "Trading by Quantum Rules - Quantum Anthropic Principle," Departmental Working Papers 9, University of Bialtystok, Department of Theoretical Physics.
    15. Mikhail Anufriev & Davide Radi & Fabio Tramontana, 2018. "Some reflections on past and future of nonlinear dynamics in economics and finance," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 91-118, November.
    16. Cavalli, Fausto & Naimzada, Ahmad & Pireddu, Marina, 2015. "Heterogeneity and the (de)stabilizing role of rationality," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 226-244.
    17. Iqbal, Azhar & Chappell, James M. & Abbott, Derek, 2015. "Social optimality in quantum Bayesian games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 798-805.
    18. Pakuła, Ireneusz & Piotrowski, Edward W. & Sładkowski, Jan, 2007. "Universality of measurements on quantum markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 397-405.
    19. Edward Piotrowski & Jan Sładkowski, 2004. "Quantum games in finance," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 61-67.
    20. Edward W. Piotrowski & Jan Sladkowski, "undated". "Quantum solution to the Newcomb's paradox," Departmental Working Papers 10, University of Bialtystok, Department of Theoretical Physics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.