IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20170013.html
   My bibliography  Save this paper

A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies

Author

Listed:
  • David E. Allen

    (University of South Australia, University of Sydney, and Edith Cowan University, Australia)

  • Michael McAleer

    (National Tsing Hua University, Taiwan; Erasmus University Rotterdam, The Netherlands; Compultense University of Madrid, Spain; Yokohama National University, Japan)

  • Abhay K. Singh

    (Edith Cowan University, Australia)

Abstract

This paper features a tri-criteria analysis of Eurekahedge fund data strategy index data. We use nine Eurekahedge equally weighted main strategy indices for the portfolio analysis. The tri-criteria analysis features three objectives: return, risk and dispersion of risk objectives in a Multi-Criteria Optimisation (MCO) portfolio analysis. We vary the MCO return and risk targets and contrast the results with four more standard portfolio optimisation criteria, namely the tangency portfolio(MSR), the most diversied portfolio (MDP), the global minimum variance portfolio (GMW), and portfolios based on minimising expected shortfall (ERC). Backtests of the chosen portfolios for this hedge fund data set indicate that the use of MCO is accompanied by uncertainty about the a priori choice of optimal parameter settings for the decision criteria. The empirical results do not appear to outperform more standard bi-criteria portfolio analyses in the backtests undertaken on our hedge fund index data.

Suggested Citation

  • David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies," Tinbergen Institute Discussion Papers 17-013/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20170013
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/17013.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Barry, Christopher B, 1974. "Portfolio Analysis under Uncertain Means, Variances, and Covariances," Journal of Finance, American Finance Association, vol. 29(2), pages 515-522, May.
    3. Turan G. Bali & Stephen J. Brown & K. Ozgur Demirtas, 2013. "Do Hedge Funds Outperform Stocks and Bonds?," Management Science, INFORMS, vol. 59(8), pages 1887-1903, August.
    4. Spronk, J. & Hallerbach, W.G.P.M., 2002. "The Relevance of MCDM for Financial Decisions," ERIM Report Series Research in Management ERS-2002-69-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Utz, Sebastian & Wimmer, Maximilian & Steuer, Ralph E., 2015. "Tri-criterion modeling for constructing more-sustainable mutual funds," European Journal of Operational Research, Elsevier, vol. 246(1), pages 331-338.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    8. Michael S. O’Doherty & N. E. Savin & Ashish Tiwari, 2016. "Evaluating Hedge Funds with Pooled Benchmarks," Management Science, INFORMS, vol. 62(1), pages 69-89, January.
    9. Ralph Steuer & Yue Qi & Markus Hirschberger, 2007. "Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection," Annals of Operations Research, Springer, vol. 152(1), pages 297-317, July.
    10. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    11. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-278, July.
    12. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, Michael, 2006. "Master funds in portfolio analysis with general deviation measures," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 743-778, February.
    13. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2016. "Down-Side Risk Metrics as Portfolio Diversification Strategies across the Global Financial Crisis," JRFM, MDPI, vol. 9(2), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Allen & Michael McAleer & Abhay K. Singh, 2018. "A Multi-Criteria Financial and Energy Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2018-18, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. David E. Allen & Michael McAleer & Abhay K. Singh, 2018. "A Multi-Criteria Financial and Energy Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2018-18, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Documentos de Trabajo del ICAE 2015-19, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    4. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2014. "European Market Portfolio Diversifcation Strategies across the GFC," Working Papers in Economics 14/25, University of Canterbury, Department of Economics and Finance.
    5. David E. Allen & Michael McAleer & Shelton Peiris & Abhay K. Singh, 2014. "Hedge Fund Portfolio Diversification Strategies across the GFC," Tinbergen Institute Discussion Papers 14-151/III, Tinbergen Institute.
    6. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2016. "Down-Side Risk Metrics as Portfolio Diversification Strategies across the Global Financial Crisis," JRFM, MDPI, vol. 9(2), pages 1-18, June.
    7. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    8. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    9. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    10. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    11. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    12. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    13. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    14. Mark R. Powell, 2015. "Risk‐Based Sampling: I Don't Want to Weight in Vain," Risk Analysis, John Wiley & Sons, vol. 35(12), pages 2172-2182, December.
    15. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    16. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    17. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    18. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    19. Yue Qi, 2018. "On outperforming social-screening-indexing by multiple-objective portfolio selection," Annals of Operations Research, Springer, vol. 267(1), pages 493-513, August.
    20. Wolff, Dominik & Bessler, Wolfgang & Opfer, Heiko, 2012. "Multi-Asset Portfolio Optimization and Out-of-Sample Performance: An Evaluation of Black-Litterman, Mean Variance and Naïve Diversification Approaches," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62020, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    MCO; Portfolio Analysis; Hedge Fund Strategies; Multi-Criteria Optimisation;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20170013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.