IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2563-d1360702.html
   My bibliography  Save this article

Environmental Impacts of Rice Intensification Using High-Yielding Varieties: Evidence from Mazandaran, Iran

Author

Listed:
  • Oriana Gava

    (Research Centre Policies and Bioeconomy, Council for Agricultural Research and Economics, 50127 Florence, Italy)

  • Zahra Ardakani

    (Department of Agricultural Economics, Islamic Azad University, Qaemshahr Branch, Qaemshahr 4765161964, Iran
    Department of Agricultural and Food Science, University of Bologna, 40126 Bologna, Italy)

  • Adela Delalic

    (Department for Quantitative Economics, School of Economics and Business, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina)

  • Stefano Monaco

    (Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, 10135 Turin, Italy)

Abstract

This article aims to show the potential contribution of high-yielding rice varieties to achieve sustainable intensification in paddy farming, by focusing on a developing country. A comparative life cycle assessment of traditional vs. high-yielding varieties is carried out by comparing the area-based and yield-based results. Primary data are collected through a farm survey (49 farms in the Mazandaran province, Iran; spring 2018). The results highlight that high-yielding varieties can reduce the yield-scaled impacts. However, area-scaled impacts are subject to increase for most impact categories. Statistically significant trade-offs involve global warming potential (+13% per ha and −28% per t in high-yielding varieties) and fossil resource depletion (+15% per ha and −26% per t in high-yielding varieties). Pesticide management is the most alarming practice. High-yielding varieties increase pesticide consumption and related toxicity impacts both per t and per ha. This study is a new contribution to the literature by improving and broadening the mainstream productivity perspective of current life cycle assessment research about crop varieties. The lessons learnt from this study suggest that the trade-offs between yield-scaled and area-scaled impacts should be carefully considered by decision-makers and policymakers, especially in developing countries that, like Iran, are affected by the overexploitation of natural resources. Targeted policy and the development of farmer education and advisory services are needed to create the enabling conditions for farm management changes, including conscious use of production inputs while avoiding heuristics.

Suggested Citation

  • Oriana Gava & Zahra Ardakani & Adela Delalic & Stefano Monaco, 2024. "Environmental Impacts of Rice Intensification Using High-Yielding Varieties: Evidence from Mazandaran, Iran," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2563-:d:1360702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirzaei, Arezoo & Knierim, Andrea & Fealy Nahavand, Saeid & Mahmoudi, Hossein, 2017. "Gap analysis of water governance in Northern Iran: A closer look into the water reservoirs," Environmental Science & Policy, Elsevier, vol. 77(C), pages 98-106.
    2. Mihir Rakshit, 2018. "Some Economics of Fertiliser Subsidy," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 209-228, December.
    3. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    4. Jianling Fan & Cuiying Liu & Jianan Xie & Lu Han & Chuanhong Zhang & Dengwei Guo & Junzhao Niu & Hao Jin & Brian G. McConkey, 2022. "Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.
    2. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    3. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    4. Bruna Moreira & Alexandre Gonçalves & Luís Pinto & Miguel A. Prieto & Márcio Carocho & Cristina Caleja & Lillian Barros, 2024. "Intercropping Systems: An Opportunity for Environment Conservation within Nut Production," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    5. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    6. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    7. Qingzhen Zhu & Zhihao Zhu & Hengyuan Zhang & Yuanyuan Gao & Liping Chen, 2023. "Design of an Electronically Controlled Fertilization System for an Air-Assisted Side-Deep Fertilization Machine," Agriculture, MDPI, vol. 13(12), pages 1-12, November.
    8. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    9. Seul-gi Lee & Bashir Adelodun & Mirza Junaid Ahmad & Kyung Sook Choi, 2022. "Multi-Level Prioritization Analysis of Water Governance Components to Improve Agricultural Water-Saving Policy: A Case Study from Korea," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    10. Xiao Chen & Xiaodong Chen & Jiabin Jiao & Fusuo Zhang & Xinping Chen & Guohua Li & Zhao Song & Eldad Sokolowski & Patricia Imas & Hillel Magen & Amnon Bustan & Yuzhi He & Dasen Xie & Baige Zhang, 2022. "Towards Balanced Fertilizer Management in South China: Enhancing Wax Gourd ( Benincasa hispida ) Yield and Produce Quality," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    11. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    14. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    15. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    16. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Inês Costa-Pereira & Ana A. R. M. Aguiar & Fernanda Delgado & Cristina A. Costa, 2024. "A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    18. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    19. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2563-:d:1360702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.