IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p921-d1412495.html
   My bibliography  Save this article

Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China

Author

Listed:
  • Taotao Yang

    (Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

  • Jixiang Zou

    (Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

  • Longmei Wu

    (Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

  • Xiaozhe Bao

    (Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

  • Yu Jiang

    (Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China)

  • Nan Zhang

    (Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China)

  • Bin Zhang

    (Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

Abstract

The effect of climate warming on rice production in China is profound, yet there has been limited research on how it affects the grain yield, nitrogen (N) uptake, and N utilization efficiency (NUtE) of the double-cropping indica rice in South China. To address this gap, we conducted a free air temperature increase (FATI) experiment in Guangdong province during 2020 and 2021. Our findings revealed that warming led to a significant reduction in grain yield, with early rice (ER) and late rice (LR) experiencing average decreases of 5.2% and 6.3%, respectively, compared to control treatments. This decline was primarily attributed to the reduced grain weight of ER and the fewer spikelet numbers per panicle of LR under warming conditions. Although the dry matter translocation, harvest index, and N translocation efficiency of ER remained unchanged under warming conditions, these of LR decreased by an average of 58.1%, 8.8%, and 22.3%, respectively. Additionally, while warming did not affect the N uptake in ER at maturity, it significantly increased the N uptake in LR by an average of 11.0%. Therefore, under warming conditions, the NUtE of both ER and LR was markedly decreased by 6.9% and 15.5% over the two years. These results indicate that climate warming may have significant negative impacts on the grain yield and the NUtE of indica rice within double-rice cropping systems in South China. Understanding these dynamics is vital for maintaining the stability of rice yields in anticipation of future climate warming.

Suggested Citation

  • Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:921-:d:1412495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Enli Wang & Di He & Jing Wang & Julianne M. Lilley & Brendan Christy & Munir P. Hoffmann & Garry O’Leary & Jerry L. Hatfield & Luigi Ledda & Paola A. Deligios & Brian Grant & Qi Jing & Claas Nendel & , 2022. "How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
    2. Taotao Yang & Yanhua Zeng & Yanni Sun & Jun Zhang & Xueming Tan & Yongjun Zeng & Shan Huang & Xiaohua Pan, 2019. "Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(10), pages 483-489.
    3. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruna Moreira & Alexandre Gonçalves & Luís Pinto & Miguel A. Prieto & Márcio Carocho & Cristina Caleja & Lillian Barros, 2024. "Intercropping Systems: An Opportunity for Environment Conservation within Nut Production," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    2. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    3. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    5. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Feifei Pan & Sha Pan & Jiao Tang & Jingping Yuan & Huaixia Zhang & Bihua Chen, 2022. "Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    7. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).
    8. Rushan Chai & Lidong Huang & Lingling Li & Gerty Gielen & Hailong Wang & Yongsong Zhang, 2016. "Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw," IJERPH, MDPI, vol. 13(3), pages 1-9, February.
    9. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    10. Bing Gao & Wei Huang & Xiaobo Xue & Yuanchao Hu & Yunfeng Huang & Lan Wang & Shengping Ding & Shenghui Cui, 2019. "Comprehensive Environmental Assessment of Potato as Staple Food Policy in China," IJERPH, MDPI, vol. 16(15), pages 1-19, July.
    11. Zhang, Daojun & Yang, Wanjing & Kang, Dingrong & Zhang, Han, 2023. "Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region," Land Use Policy, Elsevier, vol. 125(C).
    12. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    13. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Yunpeng Sun & Xin Zhang & Jingtian Xian & Jingsong Yang & Xiaobing Chen & Rongjiang Yao & Yongming Luo & Xiangping Wang & Wenping Xie & Dan Cao, 2023. "Saline–Alkaline Characteristics during Desalination Process and Nitrogen Input Regulation in Reclaimed Tidal Flat Soils," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    15. Xiao, Guangmin & Zhao, Zichao & Liang, Long & Meng, Fanqiao & Wu, Wenliang & Guo, Yanbin, 2019. "Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices," Agricultural Water Management, Elsevier, vol. 212(C), pages 172-180.
    16. Xiaochuang Cao & Birong Qin & Qingxu Ma & Lianfeng Zhu & Chunquan Zhu & Yali Kong & Wenhao Tian & Qianyu Jin & Junhua Zhang & Yijun Yu, 2023. "Predicting the Nitrogen Quota Application Rate in a Double Rice Cropping System Based on Rice–Soil Nitrogen Balance and 15 N Labelling Analysis," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    17. Li, Pei & Wu, JunJie & Xu, Wenchao, 2024. "The impact of industrial sulfur dioxide emissions regulation on agricultural production in China †," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    18. Hao Li & Tiantian Li & Wei-Yew Chang, 2023. "Family Identity, Place Identity, and Chinese Farmers’ Environment-Friendly Production Behavior," Agriculture, MDPI, vol. 13(7), pages 1-15, June.
    19. Yang, Linsheng & Zhou, Yifan & Meng, Bo & Li, Haojie & Zhan, Jian & Xiong, Huaye & Zhao, Huanyu & Cong, Wenfeng & Wang, Xiaozhong & Zhang, Wushuai & Lakshmanan, Prakash & Deng, Yan & Shi, Xiaojun & Ch, 2022. "Reconciling productivity, profitability and sustainability of small-holder sugarcane farms: A combined life cycle and data envelopment analysis," Agricultural Systems, Elsevier, vol. 199(C).
    20. Muye Huang & Chuanhui Gu & Yanchao Bai, 2023. "Effect of Fertilization on Methane and Nitrous Oxide Emissions and Global Warming Potential on Agricultural Land in China: A Meta-Analysis," Agriculture, MDPI, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:921-:d:1412495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.