IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p2021-d1262176.html
   My bibliography  Save this article

Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices

Author

Listed:
  • Yi-Xuan Lu

    (Agricultural College, Yangzhou University, Yangzhou 225009, China)

  • Si-Ting Wang

    (Business School, Yangzhou University, Yangzhou 225009, China)

  • Guan-Xin Yao

    (Business School, Yangzhou University, Yangzhou 225009, China)

  • Jing Xu

    (Business School, Yangzhou University, Yangzhou 225009, China)

Abstract

This study undertakes a comprehensive analysis of vegetable production efficiency in China using input–output data from 30 provinces spanning 2011 to 2017. By incorporating environmental pollution costs as undesirable outputs alongside vegetable output value, we employ Data Envelopment Analysis (DEA) with the Banker, Charnes, and Cooper (BCC) model and the Malmquist index model. Our assessment reveals both annual and inter-period efficiency changes. The findings highlight a modest overall efficiency in China’s vegetable production and significant regional disparities. Technical progress emerges as a pivotal determinant of total factor productivity (TFP). Recognizing these dynamics, we propose policy recommendations that prioritize technical innovation, sustainable practices, rural infrastructure enhancement, and specialized cultivation methods. Implementing these recommendations could bolster China’s position in international trade negotiations due to increased exports and potentially drive broader environmental policy reforms. As vegetable production becomes more efficient and sustainable, there might be a shift in labor needs, potentially leading to migration patterns or changes in employment structures. These insights contribute to the sustainable development of China’s vegetable industry, offering a broader understanding of the dynamics of agricultural efficiency in the context of environmental sustainability.

Suggested Citation

  • Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:2021-:d:1262176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/2021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/2021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panpan Diao & Zhonggen Zhang & Zhenyong Jin, 2018. "Dynamic and static analysis of agricultural productivity in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 293-312, May.
    2. Panpan Diao & Zhonggen Zhang & Zhenyong Jin, 2018. "Dynamic and static analysis of agricultural productivity in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 293-312, May.
    3. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    4. MARCHAND, Sébastien & GUO, Huanxiu, 2014. "The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production," China Economic Review, Elsevier, vol. 31(C), pages 201-216.
    5. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    6. C. Lovell, 2003. "The Decomposition of Malmquist Productivity Indexes," Journal of Productivity Analysis, Springer, vol. 20(3), pages 437-458, November.
    7. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    8. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing & Zhao, Ying, 2018. "Crop yield and water use efficiency under aerated irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 158-164.
    9. Athukorala, Wasantha & Lee, Boon L. & Wilson, Clevo & Fujii, Hidemichi & Managi, Shunsuke, 2023. "Measuring the impact of pesticide exposure on farmers’ health and farm productivity," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 851-862.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Stijn Reinhard & C. A. Knox Lovell & Geert Thijssen, 2002. "Analysis of Environmental Efficiency Variation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 1054-1065.
    12. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    13. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    14. Singbo, Alphonse G. & Lansink, Alfons Oude & Emvalomatis, Grigorios, 2015. "Estimating shadow prices and efficiency analysis of productive inputs and pesticide use of vegetable production," European Journal of Operational Research, Elsevier, vol. 245(1), pages 265-272.
    15. Falconer, Katherine & Hodge, Ian, 2001. "Pesticide taxation and multi-objective policy-making: farm modelling to evaluate profit/environment trade-offs," Ecological Economics, Elsevier, vol. 36(2), pages 263-279, February.
    16. Yang, Pingguo & Bian, Yun & Long, HuaiYu & Drohan, Patrick J., 2020. "Comparison of emitters of ceramic tube and polyvinyl formal under negative pressure irrigation on soil water use efficiency and nutrient uptake of crown daisy," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Agrell, Per J. & Bogetoft, Peter, 2005. "Economic and environmental efficiency of district heating plants," Energy Policy, Elsevier, vol. 33(10), pages 1351-1362, July.
    18. Wilson, Clevo & Tisdell, Clem, 2001. "Why farmers continue to use pesticides despite environmental, health and sustainability costs," Ecological Economics, Elsevier, vol. 39(3), pages 449-462, December.
    19. Guilherme Lages Barbosa & Francisca Daiane Almeida Gadelha & Natalya Kublik & Alan Proctor & Lucas Reichelm & Emily Weissinger & Gregory M. Wohlleb & Rolf U. Halden, 2015. "Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods," IJERPH, MDPI, vol. 12(6), pages 1-13, June.
    20. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    21. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    22. Alexander Gocht & Kelvin Balcombe, 2006. "Ranking efficiency units in DEA using bootstrapping an applied analysis for Slovenian farm data," Agricultural Economics, International Association of Agricultural Economists, vol. 35(2), pages 223-229, September.
    23. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    24. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    25. Li, Haoru & Mei, Xurong & Wang, Jiandong & Huang, Feng & Hao, Weiping & Li, Baoguo, 2021. "Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China," Agricultural Water Management, Elsevier, vol. 244(C).
    26. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    27. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    28. Montesano, Francesco Fabiano & van Iersel, Marc W. & Boari, Francesca & Cantore, Vito & D’Amato, Giulio & Parente, Angelo, 2018. "Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance," Agricultural Water Management, Elsevier, vol. 203(C), pages 20-29.
    29. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    30. Shen, Zhiyang & Baležentis, Tomas & Ferrier, Gary D., 2019. "Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator," China Economic Review, Elsevier, vol. 57(C).
    31. Diana H. Wall & Uffe N. Nielsen & Johan Six, 2015. "Soil biodiversity and human health," Nature, Nature, vol. 528(7580), pages 69-76, December.
    32. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    33. Nodin, Mohd Norazmi & Mustafa, Zainol & Hussain, Saiful Izzuan, 2022. "Assessing rice production efficiency for food security policy planning in Malaysia: A non-parametric bootstrap data envelopment analysis approach," Food Policy, Elsevier, vol. 107(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ito, Junichi & Li, Xinyi, 2023. "Interplay between China’s grain self-sufficiency policy shifts and interregional, intertemporal productivity differences," Food Policy, Elsevier, vol. 117(C).
    2. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    3. Yang, Pingguo & Bai, Jinjing & Yang, Miao & Ma, Erdeng & Yan, Min & Long, Huaiyu & Liu, Jian & Li, Lei, 2022. "Negative pressure irrigation for greenhouse crops in China: A review," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Zhang, Zhe & Liu, Shengyao & Jia, Songnan & Du, Fenghuan & Qi, Hao & Li, Jiaxi & Song, Xinyue & Zhao, Nan & Nie, Lanchun & Fan, Fengcui, 2021. "Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    6. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Athukorala, Wasantha & Lee, Boon L. & Wilson, Clevo & Fujii, Hidemichi & Managi, Shunsuke, 2023. "Measuring the impact of pesticide exposure on farmers’ health and farm productivity," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 851-862.
    8. Wang, Kechun & Wei, Qi & Xu, Junzeng & Cheng, Heng & Chen, Peng & Guo, Hang & Liao, Linxian & Zhao, Xuemei & Min, Zhihui, 2022. "Matching water requirements of Chinese chives planted at different distances apart from the line emitter under negative pressure irrigation subsurface system," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Xi Chen & Mingzhe Pu & Yu Zhong, 2022. "Evaluating China Food’s Fertilizer Reduction and Efficiency Initiative Using a Double Stochastic Meta-Frontier Method," IJERPH, MDPI, vol. 19(12), pages 1-21, June.
    10. Dongdong Lu & Zilong Wang, 2023. "Towards green economic recovery: how to improve green total factor productivity," Economic Change and Restructuring, Springer, vol. 56(5), pages 3163-3185, October.
    11. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers halshs-00672450, HAL.
    12. Pengfei Ge & Tan Liu & Xiaoxu Wu & Xiulu Huang, 2023. "Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    13. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," CERDI Working papers halshs-00672450, HAL.
    14. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Oksana Puzniak & Natalia Hrynchyshyn & Tetiana Datsko & Sylwia Andruszczak & Bohdan Hulko, 2022. "Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    16. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    17. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    18. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.
    19. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    20. Hang XIONG, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers 201208, CERDI.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:2021-:d:1262176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.