IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2230-d1352684.html
   My bibliography  Save this article

Optimal Energy Storage Configuration of Prosumers with Uncertain Photovoltaic in the Presence of Customized Pricing-Based Demand Response

Author

Listed:
  • Luwen Pan

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Jiajia Chen

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

Abstract

Setting an acceptable pricing strategy to attract prosumers to participate in demand response and orderly configure energy storage is a critical topic for virtual power plants (VPPs) in improving sustainable development. Based on this, this paper proposes a two-layer iterative optimization to develop a customized pricing-based demand response for energy storage with uncertain photovoltaic (PV) for prosumers. In the upper layer, the VPP formulates a customized price consisting of a two-part electricity price, on-grid electricity price and auxiliary service price according to the load characteristics of prosumers, so as to make the power supply and demand of prosumers more controllable. In the lower layer, prosumers adjust their energy storage configurations and energy consumption behavior according to the price signal, considering the uncertainty of PV. The research shows that the proposed optimization approach can encourages prosumers to configure energy storage, and explore user-side flexibility resources. The full utilization of energy storage has increased the PV output of the prosumers by 10%, and its benefits have also increased by 7%.

Suggested Citation

  • Luwen Pan & Jiajia Chen, 2024. "Optimal Energy Storage Configuration of Prosumers with Uncertain Photovoltaic in the Presence of Customized Pricing-Based Demand Response," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2230-:d:1352684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
    2. Kong, Xiangyu & Wang, Zhengtao & Liu, Chao & Zhang, Delong & Gao, Hongchao, 2023. "Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants," Applied Energy, Elsevier, vol. 334(C).
    3. Kong, Xiangyu & Lu, Wenqi & Wu, Jianzhong & Wang, Chengshan & Zhao, Xv & Hu, Wei & Shen, Yu, 2023. "Real-time pricing method for VPP demand response based on PER-DDPG algorithm," Energy, Elsevier, vol. 271(C).
    4. Wang, Ligang & Yang, Yongping & Dong, Changqing & Morosuk, Tatiana & Tsatsaronis, George, 2014. "Multi-objective optimization of coal-fired power plants using differential evolution," Applied Energy, Elsevier, vol. 115(C), pages 254-264.
    5. Wang, Ziyang & Sun, Mei & Gao, Cuixia & Wang, Xin & Ampimah, Benjamin Chris, 2021. "A new interactive real-time pricing mechanism of demand response based on an evaluation model," Applied Energy, Elsevier, vol. 295(C).
    6. Zhang, Tianhan & Qiu, Weiqiang & Zhang, Zhi & Lin, Zhenzhi & Ding, Yi & Wang, Yiting & Wang, Lianfang & Yang, Li, 2023. "Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets," Applied Energy, Elsevier, vol. 329(C).
    7. Mashlakov, Aleksei & Pournaras, Evangelos & Nardelli, Pedro H.J. & Honkapuro, Samuli, 2021. "Decentralized cooperative scheduling of prosumer flexibility under forecast uncertainties," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinchao & Sun, Zihao & Niu, Xiaoxuan & Li, Shiwei, 2024. "Economic optimization scheduling of virtual power plants considering an incentive based tiered carbon price," Energy, Elsevier, vol. 305(C).
    2. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    3. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    4. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    5. Piotr Zuk & Pawel Zuk, 2022. "Prosumers in Action: The Analysis of Social Determinants of Photovoltaic Development and Prosumer Strategies in Poland," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 294-306, July.
    6. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    7. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    8. Pratik Mochi & Kartik Pandya & Joao Soares & Zita Vale, 2023. "Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy Community," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    9. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    10. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    11. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    12. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    13. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    14. Cui, Jingshi & Wu, Jiaman & Wu, Chenye & Moura, Scott, 2023. "Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies," Applied Energy, Elsevier, vol. 352(C).
    15. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    16. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    17. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    18. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    19. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    20. Nuno Rego & Rui Castro & Carlos Santos Silva, 2023. "Assessment of Current Smart House Solutions: The Case of Portugal," Energies, MDPI, vol. 16(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2230-:d:1352684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.