IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016696.html
   My bibliography  Save this article

Optimal scheduling of multiple entities in virtual power plant based on the master-slave game

Author

Listed:
  • Shui, Jijun
  • Peng, Daogang
  • Zeng, Hui
  • Song, Yankan
  • Yu, Zhitong
  • Yuan, Xinran
  • Shen, Chen

Abstract

As the energy market evolves into a dynamic and interactive landscape, the distributed nature of virtual power plant (VPP) becomes increasingly significant. This shift highlights the limitations of traditional centralized optimization approaches in capturing the complex interplay among various stakeholders. In response, this article introduces a novel multi-entity distributed collaborative optimization strategy for an integrated energy system (IES) that incorporates a VPP, electric vehicles, and carbon capture technologies, under the Stackelberg master-slave game framework. Within this framework, the VPP operator (VPPO) assumes the role of the leader, while the energy supply aggregator (ESA), customer side residential load aggregator (CSRLA), electric vehicles aggregator (EVA), and carbon treatment system aggregator (CTSA) are positioned as the followers. The paper delves into the development of interaction strategies for each entity, aiming at achieving optimal objectives. The study undergoes by presenting the mathematical model of the VPP-integrated energy system, which is seamlessly integrated into the master-slave game structure. This integration facilitates the creation of a distributed multi-entity cooperative optimization model featuring a single leader and multiple followers, with the uniqueness of the Stackelberg equilibrium being rigorously established. Therefore, the research employs a hybrid nutcracker optimization algorithm and quadratic programming (NOA-QP) method to address the engineering challenge of optimizing operator energy pricing. The case study conducted demonstrates that the proposed scheduling methodology improves the VPP system profit by 10.80%, increases the aggregation profit by up to 1317.22%, optimizes the carbon emissions by 15.59%, and significantly improves the solution efficiency of the VPP by 99.29%.

Suggested Citation

  • Shui, Jijun & Peng, Daogang & Zeng, Hui & Song, Yankan & Yu, Zhitong & Yuan, Xinran & Shen, Chen, 2024. "Optimal scheduling of multiple entities in virtual power plant based on the master-slave game," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016696
    DOI: 10.1016/j.apenergy.2024.124286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Xingyu & Gao, Ciwei & Meng, Jing & Abbes, Dhaker, 2024. "An analytical target cascading method-based two-step distributed optimization strategy for energy sharing in a virtual power plant," Renewable Energy, Elsevier, vol. 222(C).
    2. Kong, Xiangyu & Wang, Zhengtao & Liu, Chao & Zhang, Delong & Gao, Hongchao, 2023. "Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants," Applied Energy, Elsevier, vol. 334(C).
    3. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    4. Wang, Xuejie & Li, Bingkang & Wang, Yuwei & Lu, Hao & Zhao, Huiru & Xue, Wanlei, 2022. "A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system," Applied Energy, Elsevier, vol. 310(C).
    5. Lin, Wen-Ting & Chen, Guo & Zhou, Xiaojun, 2022. "Distributed carbon-aware energy trading of virtual power plant under denial of service attacks: A passivity-based neurodynamic approach," Energy, Elsevier, vol. 257(C).
    6. Pandey, Anubhav Kumar & Jadoun, Vinay Kumar & Jayalakshmi, N.S. & Malik, Hasmat & García Márquez, Fausto Pedro, 2024. "Multi-objective price based flexible reserve scheduling of virtual power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Ding, Jianyong & Gao, Ciwei & Song, Meng & Yan, Xingyu & Chen, Tao, 2022. "Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism," Applied Energy, Elsevier, vol. 327(C).
    8. Zhang, Tianhan & Qiu, Weiqiang & Zhang, Zhi & Lin, Zhenzhi & Ding, Yi & Wang, Yiting & Wang, Lianfang & Yang, Li, 2023. "Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets," Applied Energy, Elsevier, vol. 329(C).
    9. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).
    10. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    11. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    2. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    3. Luwen Pan & Jiajia Chen, 2024. "Optimal Energy Storage Configuration of Prosumers with Uncertain Photovoltaic in the Presence of Customized Pricing-Based Demand Response," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    4. Kong, Feng & Zhang, Dongyue & Song, Minghao & Zhou, Xuecong & Wang, Yuwei, 2024. "Collaborative scheduling and benefit allocation for waste-to-energy, hydrogen storage, and power-to-gas under uncertainties with temporal relevance," Energy, Elsevier, vol. 307(C).
    5. Yan Gao & Long Gao & Pei Zhang & Qiang Wang, 2023. "Two-Stage Optimization Scheduling of Virtual Power Plants Considering a User-Virtual Power Plant-Equipment Alliance Game," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    6. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    7. Francisco Albornoz & Camilo del Río & Virginia Carter & Rodrigo Escobar & Lucas Vásquez, 2023. "Fog Water Collection for Local Greenhouse Vegetable Production in the Atacama Desert," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    8. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    9. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2024. "Temporal upscaling of solar radiation components using an analytical model for variability modeling," Renewable Energy, Elsevier, vol. 229(C).
    10. Cui, Jingshi & Wu, Jiaman & Wu, Chenye & Moura, Scott, 2023. "Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies," Applied Energy, Elsevier, vol. 352(C).
    11. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    12. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    13. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    14. Wang, Huan & Liao, Shengli & Cheng, Chuntian & Liu, Benxi & Fang, Zhou & Wu, Huijun, 2025. "Short-term scheduling strategies for hydro-wind-solar-storage considering variable-speed unit of pumped storage," Applied Energy, Elsevier, vol. 377(PA).
    15. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    16. Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan & Mulvaney-Kemp, Julie, 2024. "Renewable-battery hybrid power plants in congested electricity markets: Implications for plant configuration," Renewable Energy, Elsevier, vol. 232(C).
    17. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    18. Ebrahimi, Mahoor & Ebrahimi, Mahan & Shafie-khah, Miadreza & Laaksonen, Hannu, 2024. "EV-observing distribution system management considering strategic VPPs and active & reactive power markets," Applied Energy, Elsevier, vol. 364(C).
    19. Wu, Haochi & Qiu, Dawei & Zhang, Liyu & Sun, Mingyang, 2024. "Adaptive multi-agent reinforcement learning for flexible resource management in a virtual power plant with dynamic participating multi-energy buildings," Applied Energy, Elsevier, vol. 374(C).
    20. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.