IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1748-d1342607.html
   My bibliography  Save this article

Study on Carbon Emissions from an Urban Water System Based on a Life Cycle Assessment: A Case Study of a Typical Multi-Water County in China’s River Network Plain

Author

Listed:
  • Zihan Gui

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Heshuai Qi

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Shiwu Wang

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

Abstract

Revealing the inherent relationship between urban water systems and carbon emissions has important theoretical and practical significance for promoting “water conservation and carbon reduction” in cities. This study utilizes the 2021 social water cycle statistical data of Yiwu City to quantify the carbon emissions of urban water systems. It analyzes the “water–carbon” related characteristics and carbon emission intensities under different water sources and stages and explores the carbon reduction potential of urban water systems under different scenarios. The results show that the operational phase is the main contributor to the carbon emissions of the urban water system in the research area, accounting for approximately 86% of the total carbon emissions. Over the entire process, the carbon emissions from the water supply and drainage stages are the largest, accounting for 39% and 31% of the total carbon emissions, respectively. In terms of carbon emission intensity, the carbon footprint of the water cycling process using reclaimed water as the water source is higher than that of high-quality water and conventional water sources. This is primarily due to the significantly higher carbon emission intensity in the reclaimed water phase compared with the other phases. In terms of influencing factors, the differences in the “water–carbon” correlation characteristics of different links in the water system in the research area are mainly affected by changes in urban water consumption, water treatment methods and processes, and other related factors. For the coordinated development of “water conservation and carbon reduction” in urban areas, future efforts should focus on improving the reuse rate of reclaimed water in urban life and industry, reducing the leakage rate of water distribution networks, and enhancing water treatment processes. These measures aim to increase water efficiency in urban water systems and reduce carbon emissions.

Suggested Citation

  • Zihan Gui & Heshuai Qi & Shiwu Wang, 2024. "Study on Carbon Emissions from an Urban Water System Based on a Life Cycle Assessment: A Case Study of a Typical Multi-Water County in China’s River Network Plain," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1748-:d:1342607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Segurado, R. & Costa, M. & Duić, N. & Carvalho, M.G., 2015. "Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde," Energy, Elsevier, vol. 92(P3), pages 639-648.
    2. Xi Li & Jie Liu & Chunmiao Zheng & Guoyi Han & Holger Hoff, 2016. "Energy for water utilization in China and policy implications for integrated planning," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(3), pages 477-494, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    2. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    3. Soomauroo, Zakia & Blechinger, Philipp & Creutzig, Felix, 2023. "Electrifying public transit benefits public finances in small island developing states," Transport Policy, Elsevier, vol. 138(C), pages 45-59.
    4. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    5. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin & Lyden, Sarah, 2019. "High penetration renewable generation within Australian isolated and remote power systems," Energy, Elsevier, vol. 168(C), pages 684-692.
    6. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    7. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    8. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    9. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    10. Bissiri, Mounirah & Moura, Pedro & Perez, Ricardo Cunha & Figueiredo, Nuno Carvalho & da Silva, Patrícia Pereira, 2024. "Generation capacity expansion planning with spatially-resolved electricity demand and increasing variable renewable energy supply: Perspectives from power pooling in West Africa," Applied Energy, Elsevier, vol. 364(C).
    11. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    12. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    13. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    14. Beccali, M. & Finocchiaro, P. & Ippolito, M.G. & Leone, G. & Panno, D. & Zizzo, G., 2018. "Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: A case study," Energy, Elsevier, vol. 157(C), pages 106-114.
    15. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
    16. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    17. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Alessandro Corsini & Eileen Tortora, 2018. "Sea-Water Desalination for Load Levelling of Gen-Sets in Small Off-Grid Islands," Energies, MDPI, vol. 11(8), pages 1-18, August.
    19. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    20. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1748-:d:1342607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.