IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1714-d1341807.html
   My bibliography  Save this article

Biochar Utilization as a Forestry Climate-Smart Tool

Author

Listed:
  • Carlos Rodriguez Franco

    (U.S. Department of Agriculture, Forest Service, Washington Office. Research and Development 201, 14th Street, S.W., 2 NW, Washington, DC 20250, USA)

  • Deborah S. Page-Dumroese

    (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 S. Main, Moscow, ID 83843, USA)

  • Derek Pierson

    (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 S. Main, Moscow, ID 83843, USA)

  • Timothy Nicosia

    (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526, USA)

Abstract

Carbon (C) in gaseous form is a component of several greenhouse gases emitted during the combustion of fossil fuels. C movement between the atmosphere, land (biosphere and lithosphere), and ocean (hydrosphere) alters the total amount in each pool. Human activities accelerate C movement into the atmosphere, causing increases in temperature. This shift from terrestrial and oceanic C pools to the atmosphere causes an increase in the intensity, frequency, and duration of catastrophic climate disturbances. Although society hears and reads about C emissions, there is a lack of understanding of its importance and the need to decrease it in the atmospheric pool to avoid exacerbating climate change. Forests and biochar are two biological methods to retain C in the terrestrial pool for a long time and at a very low cost. However, forest harvesting, the use of woody biomass as a source of renewable C for different applications, and the relationship with decreasing C emissions have created a highly controversial topic among governments, the scientific community, society in general, and social groups. The main objective of this review is to highlight the importance of C, forests, and biochar, including the benefits of C sequestration to decrease the impacts of climate change and promote sustainable forests and healthy soils in the future. The main findings show strong evidence that climate-smart forest management practices are an efficient option for managing C and increasing C stocks. This review suggests that forest management mitigation actions are another efficient C management approach with high potential. The findings show that biochar is a climate-smart tool that contributes to climate change mitigation by increasing soil carbon sequestration and reducing soil GHG emissions, including other associated benefits.

Suggested Citation

  • Carlos Rodriguez Franco & Deborah S. Page-Dumroese & Derek Pierson & Timothy Nicosia, 2024. "Biochar Utilization as a Forestry Climate-Smart Tool," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1714-:d:1341807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oana A. Dumitru & Jacqueline Austermann & Victor J. Polyak & Joan J. Fornós & Yemane Asmerom & Joaquín Ginés & Angel Ginés & Bogdan P. Onac, 2019. "Constraints on global mean sea level during Pliocene warmth," Nature, Nature, vol. 574(7777), pages 233-236, October.
    2. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    3. Dieter Lüthi & Martine Le Floch & Bernhard Bereiter & Thomas Blunier & Jean-Marc Barnola & Urs Siegenthaler & Dominique Raynaud & Jean Jouzel & Hubertus Fischer & Kenji Kawamura & Thomas F. Stocker, 2008. "High-resolution carbon dioxide concentration record 650,000–800,000 years before present," Nature, Nature, vol. 453(7193), pages 379-382, May.
    4. Joseph Abed & Scott Rayburg & John Rodwell & Melissa Neave, 2022. "A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William N. Rom, 2023. "Annals of Education: Teaching Climate Change and Global Public Health," IJERPH, MDPI, vol. 21(1), pages 1-16, December.
    2. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    3. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    4. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    5. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).
    6. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    7. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    10. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    11. Frisch, L.C. & Mathis, J.T. & Kettle, N.P. & Trainor, S.F., 2015. "Gauging perceptions of ocean acidification in Alaska," Marine Policy, Elsevier, vol. 53(C), pages 101-110.
    12. Adam O’Toole & Christophe Moni & Simon Weldon & Anne Schols & Monique Carnol & Bernard Bosman & Daniel P. Rasse, 2018. "Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway," Agriculture, MDPI, vol. 8(11), pages 1-19, October.
    13. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    14. Martin L. Weitzman, 2011. "Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 23-46, National Bureau of Economic Research, Inc.
    15. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    16. Riley Jolly & Holly Fairweather & Scott Rayburg & John Rodwell, 2024. "Life Cycle Assessment and Cost Analysis of Mid-Rise Mass Timber vs. Concrete Buildings in Australia," Sustainability, MDPI, vol. 16(15), pages 1-18, July.
    17. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "Biochar production potential in Ghana—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3539-3551.
    18. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    19. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    20. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1714-:d:1341807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.