IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6465-d1444828.html
   My bibliography  Save this article

Life Cycle Assessment and Cost Analysis of Mid-Rise Mass Timber vs. Concrete Buildings in Australia

Author

Listed:
  • Riley Jolly

    (Department of Civil Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Holly Fairweather

    (Department of Civil Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Scott Rayburg

    (Department of Civil Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • John Rodwell

    (Department of Management & Marketing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

Abstract

The building and construction industry is one of the largest greenhouse gas producers, accounting for 39% of global emissions, most of these coming from concrete and steel. Mass timber construction (MTC) potentially offers a sustainable alternative to these traditional building materials. However, more research is needed to establish the sustainability credentials of MTC relative to traditional concrete and steel structures, especially for mid-rise structures. The aim of this study is to evaluate the environmental and cost performance of mid-rise mass timber buildings by conducting a life cycle assessment (LCA). The LCA uses a cradle-to-cradle approach, considering the global warming potential (GWP), freshwater use (FW), and total use of non-renewable primary energy resources (PENRT). Results indicated that mid-rise mass timber buildings have significantly lower impacts than concrete buildings, with their GWP approximately 30 times lower, FW about 20 times lower, and PENRT reaching a negative value. Additionally, the cost analysis revealed that MTC buildings can be cheaper to build and thus possibly more profitable than concrete buildings. These findings establish mass timber as a viable and sustainable option for the future of Australia’s construction industry.

Suggested Citation

  • Riley Jolly & Holly Fairweather & Scott Rayburg & John Rodwell, 2024. "Life Cycle Assessment and Cost Analysis of Mid-Rise Mass Timber vs. Concrete Buildings in Australia," Sustainability, MDPI, vol. 16(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6465-:d:1444828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph Abed & Scott Rayburg & John Rodwell & Melissa Neave, 2022. "A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Starzyk & Kinga Rybak-Niedziółka & Aleksandra Nowysz & Janusz Marchwiński & Alicja Kozarzewska & Joanna Koszewska & Anna Piętocha & Polina Vietrova & Przemysław Łacek & Mikołaj Donderewicz &, 2024. "New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria," Energies, MDPI, vol. 17(17), pages 1-28, September.
    2. Jiayi Li & Lars Vabbersgaard Andersen & Markus Matthias Hudert, 2023. "The Potential Contribution of Modular Volumetric Timber Buildings to Circular Construction: A State-of-the-Art Review Based on Literature and 60 Case Studies," Sustainability, MDPI, vol. 15(23), pages 1-32, November.
    3. Carlos Rodriguez Franco & Deborah S. Page-Dumroese & Derek Pierson & Timothy Nicosia, 2024. "Biochar Utilization as a Forestry Climate-Smart Tool," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
    4. Ahmed Selema, 2023. "Material Tradeoff of Rotor Architecture for Lightweight Low-Loss Cost-Effective Sustainable Electric Drivetrains," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    5. David A. Finnie & Rehan Masood & Seth Goldsworthy & Benjamin Harding, 2024. "Embodied Carbon in New Zealand Commercial Construction," Energies, MDPI, vol. 17(11), pages 1-15, May.
    6. Luis Orozco & Anna Krtschil & Hans Jakob Wagner & Simon Bechert & Felix Amtsberg & Jan Knippers & Achim Menges, 2023. "Co-Design Methods for Non-Standard Multi-Storey Timber Buildings," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    7. Victor De Araujo & André Christoforo, 2023. "The Global Cross-Laminated Timber (CLT) Industry: A Systematic Review and a Sectoral Survey of Its Main Developers," Sustainability, MDPI, vol. 15(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6465-:d:1444828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.