IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v86y2015icp250-261.html
   My bibliography  Save this article

The environmental and cost implications of solar energy preferences in Renewable Portfolio Standards

Author

Listed:
  • Novacheck, Joshua
  • Johnson, Jeremiah X.

Abstract

Many state-level Renewable Portfolio Standards (RPS) include preferences for solar generation, with goals of increasing the generation diversity, reducing solar costs, and encouraging local solar industries. Depending on their policy design, these preferences can impact the RPS program costs and emissions reduction. This study evaluates the impact of these policies on costs and emissions, coupling an economic dispatch model with optimized renewable site selection. Three policy designs of an increased RPS in Michigan are investigated: (1) 20% Solar Carve-Out, (2) 5% Distributed Generation Solar Carve-Out, and (3) 3× Solar Multiplier. The 20% Solar Carve-Out scenario was found to increase RPS costs 28%, while the 5% Distributed Generation Solar Carve-Out increased costs by 34%. Both of these solar preferences had minimal impact on total emissions. The 3× Solar Multiplier decreases total RPS program costs by 39%, but adds less than half of the total renewable generation of the other cases, significantly increasing emissions of CO2, NOx, and SO2 relative to an RPS without the solar credit multiplier. Sensitivity analysis of the installed cost of solar and the natural gas price finds small changes in the results of the Carve-Out cases, with a larger impact on the 3× Solar Multiplier.

Suggested Citation

  • Novacheck, Joshua & Johnson, Jeremiah X., 2015. "The environmental and cost implications of solar energy preferences in Renewable Portfolio Standards," Energy Policy, Elsevier, vol. 86(C), pages 250-261.
  • Handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:250-261
    DOI: 10.1016/j.enpol.2015.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515300069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaul, Chip & Carley, Sanya, 2012. "Solar set asides and renewable electricity certificates: Early lessons from North Carolina's experience with its renewable portfolio standard," Energy Policy, Elsevier, vol. 48(C), pages 460-469.
    2. Johnson, Erik Paul, 2014. "The cost of carbon dioxide abatement from state renewable portfolio standards," Resource and Energy Economics, Elsevier, vol. 36(2), pages 332-350.
    3. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    4. Palmer, Karen & Paul, Anthony & Woerman, Matt & Steinberg, Daniel C., 2011. "Federal policies for renewable electricity: Impacts and interactions," Energy Policy, Elsevier, vol. 39(7), pages 3975-3991, July.
    5. Thomas P. Lyon & Haitao Yin, 2010. "Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 133-158.
    6. Buckman, Greg, 2011. "The effectiveness of Renewable Portfolio Standard banding and carve-outs in supporting high-cost types of renewable electricity," Energy Policy, Elsevier, vol. 39(7), pages 4105-4114, July.
    7. Arbabzadeh, Maryam & Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2015. "Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration," Applied Energy, Elsevier, vol. 146(C), pages 397-408.
    8. Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2014. "Assessment of energy storage for transmission-constrained wind," Applied Energy, Elsevier, vol. 124(C), pages 377-388.
    9. Wiser, Ryan & Barbose, Galen & Holt, Edward, 2011. "Supporting solar power in renewables portfolio standards: Experience from the United States," Energy Policy, Elsevier, vol. 39(7), pages 3894-3905, July.
    10. Bird, Lori & Chapman, Caroline & Logan, Jeff & Sumner, Jenny & Short, Walter, 2011. "Evaluating renewable portfolio standards and carbon cap scenarios in the U.S. electric sector," Energy Policy, Elsevier, vol. 39(5), pages 2573-2585, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jed J. Cohen & Levan Elbakidze & Randall Jackson, 2022. "Interstate protectionism: the case of solar renewable energy credits," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 717-738, March.
    2. Wang, Yunfei & Li, Jinke & O'Leary, Nigel & Shao, Jing, 2024. "Banding: A game changer in the Renewables Obligation scheme in the United Kingdom," Energy Economics, Elsevier, vol. 130(C).
    3. Barbose, Galen & Wiser, Ryan & Heeter, Jenny & Mai, Trieu & Bird, Lori & Bolinger, Mark & Carpenter, Alberta & Heath, Garvin & Keyser, David & Macknick, Jordan & Mills, Andrew & Millstein, Dev, 2016. "A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards," Energy Policy, Elsevier, vol. 96(C), pages 645-660.
    4. Mostafaeipour, Ali & Qolipour, Mojtaba & Mohammadi, Kasra, 2016. "Evaluation of installing photovoltaic plants using a hybrid approach for Khuzestan province, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 60-74.
    5. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    6. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    7. Valdés Lucas, Javier Noel & Escribano Francés, Gonzalo & San Martín González, Enrique, 2016. "Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1032-1046.
    8. Katarzyna Cheba & Iwona Bąk, 2021. "Environmental Production Efficiency in the European Union Countries as a Tool for the Implementation of Goal 7 of the 2030 Agenda," Energies, MDPI, vol. 14(15), pages 1-19, July.
    9. Yang Tang & Yifeng Liu & Weiqiang Huo & Meng Chen & Shilong Ye & Lei Cheng, 2023. "Optimal Allocation Scheme of Renewable Energy Consumption Responsibility Weight under Renewable Portfolio Standards: An Integrated Evolutionary Game and Stochastic Optimization Approach," Energies, MDPI, vol. 16(7), pages 1-22, March.
    10. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    11. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
    12. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    13. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Tehmina Zahid & Noman Arshed & Mubbasher Munir & Kamran Hameed, 2021. "Role of energy consumption preferences on human development: a study of SAARC region," Economic Change and Restructuring, Springer, vol. 54(1), pages 121-144, February.
    15. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    16. Barbara Breitschopf & Anne Held & Gustav Resch, 2016. "A concept to assess the costs and benefits of renewable energy use and distributional effects among actors: The example of Germany," Energy & Environment, , vol. 27(1), pages 55-81, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schelly, Chelsea, 2014. "Implementing renewable energy portfolio standards: The good, the bad, and the ugly in a two state comparison," Energy Policy, Elsevier, vol. 67(C), pages 543-551.
    2. Wang, Tan & Gong, Yu & Jiang, Chuanwen, 2014. "A review on promoting share of renewable energy by green-trading mechanisms in power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 923-929.
    3. Anthony Oliver & Madhu Khanna, 2018. "The spatial distribution of welfare costs of Renewable Portfolio Standards in the United States electricity sector," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 269-287, October.
    4. Rountree, Valerie, 2019. "Nevada's experience with the Renewable Portfolio Standard," Energy Policy, Elsevier, vol. 129(C), pages 279-291.
    5. Kim, Serena Y., 2020. "Institutional arrangements and airport solar PV," Energy Policy, Elsevier, vol. 143(C).
    6. Brown, Marilyn A. & Gumerman, Etan & Sun, Xiaojing & Sercy, Kenneth & Kim, Gyungwon, 2012. "Myths and facts about electricity in the U.S. South," Energy Policy, Elsevier, vol. 40(C), pages 231-241.
    7. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    8. Gaul, Chip & Carley, Sanya, 2012. "Solar set asides and renewable electricity certificates: Early lessons from North Carolina's experience with its renewable portfolio standard," Energy Policy, Elsevier, vol. 48(C), pages 460-469.
    9. Zhang, Wei & Yang, Jun & Sheng, Pengfei & Li, Xuesong & Wang, Xingwu, 2014. "Potential cooperation in renewable energy between China and the United States of America," Energy Policy, Elsevier, vol. 75(C), pages 403-409.
    10. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    11. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    12. Barbose, Galen & Bird, Lori & Heeter, Jenny & Flores-Espino, Francisco & Wiser, Ryan, 2015. "Costs and benefits of renewables portfolio standards in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 523-533.
    13. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    15. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    16. Zhai, Pei, 2013. "Analyzing solar energy policies using a three-tier model: A case study of photovoltaics adoption in Arizona, United States," Renewable Energy, Elsevier, vol. 57(C), pages 317-322.
    17. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    18. del Río, Pablo & Tarancón, Miguel-Ángel, 2012. "Analysing the determinants of on-shore wind capacity additions in the EU: An econometric study," Applied Energy, Elsevier, vol. 95(C), pages 12-21.
    19. Crago, Christine & Chernyakhovskiy, Ilya, 2014. "Solar PV Technology Adoption in the United States: An Empirical Investigation of State Policy Effectiveness," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169939, Agricultural and Applied Economics Association.
    20. Eric Bowen & Donald J. Lacombe, 2017. "Spatial Dependence in State Renewable Policy: Effects of Renewable Portfolio Standards on Renewable Generation within NERC Regions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:250-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.