IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p10017-d1522587.html
   My bibliography  Save this article

A Review of Carbon Emission Reduction During the Operation Stage of Substations

Author

Listed:
  • Weixian Che

    (Power Grid Planning and Research Center, Guangdong Power Grid Corporation Limited, Guangzhou 511400, China)

  • Yanfeng Wang

    (Power Grid Planning and Research Center, Guangdong Power Grid Corporation Limited, Guangzhou 511400, China)

  • Wenwei Zhu

    (Power Grid Planning and Research Center, Guangdong Power Grid Corporation Limited, Guangzhou 511400, China)

  • Lexin Hong

    (School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China)

  • Can Fang

    (School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China)

  • Huijun Wu

    (School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China)

  • Jia Liu

    (School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China)

Abstract

As an important part of the power industry, carbon reduction technology in substations plays a key role in supporting the implementation of national policy of carbon peak and reduction. In recent years, a series of carbon emission reduction measures have been developed in the operation phase of substations and promoted beneficial carbon emission reduction. This article summarizes the progress of related technologies and applications from the aspects of substation composition, carbon emission sources, carbon emission reduction technologies, and their effects. Firstly, the composition of carbon emissions from substations during operation is described. Secondly, various measures for carbon emission reduction are reviewed, including the selection of substation equipment types, the intelligent management of substation equipment, and the use of renewable energy. Finally, future technological directions for carbon reduction in substations are discussed, providing technical references and guidance for the sustainable construction and development of low-carbon substations.

Suggested Citation

  • Weixian Che & Yanfeng Wang & Wenwei Zhu & Lexin Hong & Can Fang & Huijun Wu & Jia Liu, 2024. "A Review of Carbon Emission Reduction During the Operation Stage of Substations," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10017-:d:1522587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/10017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/10017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaojuan Li & Chen Wang & Mukhtar A. Kassem & Shu-Yi Wu & Tai-Bing Wei, 2022. "Case Study on Carbon Footprint Life-Cycle Assessment for Construction Delivery Stage in China," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    2. Binglei Xue & Fumu Lu & Juanli Guo & Zhoupeng Wang & Zhongrui Zhang & Yi Lu, 2023. "Research on Energy Efficiency Evaluation Model of Substation Building Based on AHP and Fuzzy Comprehensive Theory," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    3. Rikun Wen & Shenjun Qi & Ahmad Jrade, 2016. "Simulation and Assessment of Whole Life-Cycle Carbon Emission Flows from Different Residential Structures," Sustainability, MDPI, vol. 8(8), pages 1-15, August.
    4. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    5. Li Zhao & Cheng Guo & Leduan Chen & Liping Qiu & Weiwei Wu & Qingqin Wang, 2024. "Using BIM and LCA to Calculate the Life Cycle Carbon Emissions of Inpatient Building: A Case Study in China," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    6. Licklederer, Thomas & Zinsmeister, Daniel & Lukas, Lorenz & Speer, Fabian & Hamacher, Thomas & Perić, Vedran S., 2024. "Control of bidirectional prosumer substations in smart thermal grids: A weighted proportional-integral control approach," Applied Energy, Elsevier, vol. 354(PA).
    7. Shengdong Cheng & Xin Zhou & Huan Zhou, 2023. "Study on Carbon Emission Measurement in Building Materialization Stage," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    8. Toro-Cárdenas, Mateo & Moreira, Inês & Morais, Hugo & Carvalho, Pedro M.S. & Ferreira, Luis A.F.M., 2023. "Net load disaggregation at secondary substation level," Renewable Energy, Elsevier, vol. 207(C), pages 765-771.
    9. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    10. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    11. Petrović, Stefan & Bühler, Fabian & Radoman, Uroš & McKenna, Russell, 2022. "Power transformers as excess heat sources – a case study for Denmark," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    2. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    3. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    5. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    6. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    9. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    11. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    12. Zhou, Huairong & Cao, Abo & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Yang, Siyu, 2024. "Process integration and analysis of coupling solid oxide electrolysis cell (SOEC) and CO2 to methanol," Energy, Elsevier, vol. 307(C).
    13. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi, 2024. "Low-carbon operation of integrated electricity–gas system with hydrogen injection considering hydrogen mixed gas turbine and laddered carbon trading," Applied Energy, Elsevier, vol. 374(C).
    14. Zhongshuai Shen & Xueying Bao & Zilong Li & Xiangru Lv, 2024. "Comparative Analysis of Carbon Emissions from Filled Embankment and Excavated Graben Schemes of Railway Subgrade Engineering," Sustainability, MDPI, vol. 16(19), pages 1-28, September.
    15. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    16. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    17. Lee, Dae-Gyun & Lee, Ji-Hwan & Kim, Gyeong-Min & Jeong, Jae-Seong & Kim, Seung-Mo & Jeon, Chung-Hwan, 2024. "The Initial ash deposition formation in horizontal combustion reactor for blending torrefied biomass wood pellets and coals," Renewable Energy, Elsevier, vol. 226(C).
    18. Qiujie Sun & Jingyu Zhou & Zhou Lan & Xiangyang Ma, 2023. "The Economic Influence of Energy Storage Construction in the Context of New Power Systems," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    19. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    20. Ruiqing Yuan & Jiayi Lu & Kai Zhang & Hongying Niu & Ying Long & Xiangyang Xu, 2024. "Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt," Energies, MDPI, vol. 17(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10017-:d:1522587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.