Vulnerability Comparisons of Various Complex Urban Metro Networks Under Multiple Failure Scenarios
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Zhen & Dong, Xiaobin & Guo, Li, 2023. "Scenario inference model of urban metro system cascading failure under extreme rainfall conditions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Zhang, Li & Chen, Tingting & Liu, Zhongshan & Yu, Bin & Wang, Yunpeng, 2024. "Analysis of multi-modal public transportation system performance under metro disruptions: A dynamic resilience assessment framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
- Haonan Ye & Xiao Luo, 2021. "Cascading Failure Analysis on Shanghai Metro Networks: An Improved Coupled Map Lattices Model Based on Graph Attention Networks," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
- Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
- Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
- Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
- Lu, Qing-Chang & Li, Jing & Xu, Peng-Cheng & Zhang, Lei & Cui, Xin, 2024. "Modeling cascading failures of urban rail transit network based on passenger spatiotemporal heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Zhang, Jianhua & Zhou, Yu & Wang, Shuliang & Min, Qinjie, 2024. "Critical station identification and robustness analysis of urban rail transit networks based on comprehensive vote-rank algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
- Chen Zhang & Yichen Liang & Tian Tian & Peng Peng, 2024. "Sustainable Transportation: Exploring the Node Importance Evolution of Rail Transit Networks during Peak Hours," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
- Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
- Yulin Zhao & Linkun Li & Zhishuo Zhang & Daniel (Jian) Sun, 2024. "Performance Evaluation for the Expansion of Multi-Level Rail Transit Network in Xi’an Metropolitan Area: Empirical Analysis on Accessibility and Resilience," Land, MDPI, vol. 13(10), pages 1-26, October.
- Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
- Xuelei Meng & Yahui Wang & Limin Jia & Lei Li, 2020. "Reliability Optimization of a Railway Network," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
- Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
- Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
- Qian, Peipei & Yang, Zhongzhen & Lian, Feng, 2024. "The structural and spatial evolution of the China Railway Express network," Research in Transportation Economics, Elsevier, vol. 103(C).
- Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
- Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
- Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
More about this item
Keywords
complex metro networks; importance identification; vulnerability evaluation; multiple failure scenarios; comparative analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9603-:d:1513896. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.