IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9354-d1508329.html
   My bibliography  Save this article

Decarbonizing Public Transportation: A Multi-Criteria Comparative Analysis of Battery Electric Buses and Fuel Cell Electric Buses

Author

Listed:
  • Afnan Fayez Eliyan

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar)

  • Mohamed Haouari

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar)

  • Ahmad Sleiti

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar)

Abstract

To combat global warming, many industrialized countries have announced plans to ban vehicles powered by fossil fuel in the near future. In alignment with this global initiative, many countries across the globe are committed to decarbonizing their public transportation sector, which significantly contributes to increased greenhouse gas emissions. A promising strategy to achieve this goal is the adoption of electric buses, specifically battery electric buses and fuel cell electric buses. Each technology offers distinct advantages and drawbacks, making the decision-making process complex. This research aims to answer two critical questions: What is the optimal choice for decarbonizing the bus transportation sector—electric battery buses or fuel cell electric buses? And what are the best energy carrier pathways for charging or refueling these buses? We propose a methodological framework based on multi-criteria decision-making to address these questions comprehensively. This framework utilizes the entropy weighting and the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) methodologies to rank alternative bus technologies along with energy carrier pathways. The framework evaluates a range of criteria, including economic viability, energy demand, and environmental aspects. To illustrate the framework, we considered Qatar as a case study. Our results indicate that, with respect to economic viability and energy consumption, the operation of battery electric buses is favored over fuel cell electric buses, regardless of the energy pathway utilized during both the energy production and bus operation phases. However, from an environmental perspective, operating both bus alternatives using energy from green sources provides superior performance compared to when these buses are powered by natural gas sources.

Suggested Citation

  • Afnan Fayez Eliyan & Mohamed Haouari & Ahmad Sleiti, 2024. "Decarbonizing Public Transportation: A Multi-Criteria Comparative Analysis of Battery Electric Buses and Fuel Cell Electric Buses," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9354-:d:1508329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lubecki, Adrian & Szczurowski, Jakub & Zarębska, Katarzyna, 2023. "A comparative environmental Life Cycle Assessment study of hydrogen fuel, electricity and diesel fuel for public buses," Applied Energy, Elsevier, vol. 350(C).
    2. Borghetti, Fabio & Carra, Martina & Besson, Carlotta & Matarrese, Elisabetta & Maja, Roberto & Barabino, Benedetto, 2024. "Evaluating alternative fuels for a bus fleet: An Italian case," Transport Policy, Elsevier, vol. 154(C), pages 1-15.
    3. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    4. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    5. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    6. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    7. Ally, Jamie & Pryor, Trevor, 2016. "Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study," Energy Policy, Elsevier, vol. 94(C), pages 285-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François, Agnès & Roche, Robin & Grondin, Dominique & Winckel, Nastasya & Benne, Michel, 2024. "Investigating the use of hydrogen and battery electric vehicles for public transport: A technical, economical and environmental assessment," Applied Energy, Elsevier, vol. 375(C).
    2. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    3. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    4. Wang, Zhuowei & Yu, Jiangbo (Gabe) & Chen, Anthony & Fu, Xiaowen, 2024. "Subsidy policies towards zero-emission bus fleets: A systematic technical-economic analysis," Transport Policy, Elsevier, vol. 150(C), pages 1-13.
    5. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    6. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    7. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    9. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    10. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    11. Pivac, Ivan & Šimunović, Jakov & Barbir, Frano & Nižetić, Sandro, 2024. "Reduction of greenhouse gases emissions by use of hydrogen produced in a refinery by water electrolysis," Energy, Elsevier, vol. 296(C).
    12. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    13. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
    14. Nikoleta Mikušová & Gabriel Fedorko & Vieroslav Molnár & Martina Hlatká & Rudolf Kampf & Veronika Sirková, 2021. "Possibility of a Solution of the Sustainability of Transport and Mobility with the Application of Discrete Computer Simulation—A Case Study," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    15. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    16. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
    17. Dong Sik Kim & Young Mo Chung & Beom Jin Chung, 2023. "Statistical Analysis of Electric Vehicle Charging Based on AC Slow Chargers," Energies, MDPI, vol. 16(6), pages 1-15, March.
    18. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    20. Arslan, Asli Ergenekon & Arslan, Oguz & Genc, Mustafa Serdar, 2024. "Hybrid modeling for the multi-criteria decision making of energy systems: An application for geothermal district heating system," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9354-:d:1508329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.