IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923011303.html
   My bibliography  Save this article

A comparative environmental Life Cycle Assessment study of hydrogen fuel, electricity and diesel fuel for public buses

Author

Listed:
  • Lubecki, Adrian
  • Szczurowski, Jakub
  • Zarębska, Katarzyna

Abstract

Hydrogen fuel and electricity are energy carriers viewed as promising alternatives for the modernization and decarbonization of public bus transportation fleets. In order to choose development pathways that will lead transportation systems toward a sustainable future, the authors developed an environmental model based on the Life Cycle Assessment approach. The model tested the impact of energy carrier consumption during driving as well as the electricity origin employed to power electric buses and produce hydrogen. Energy sources such as wind, solar, waste and grid electricity were investigated. The scope of the study included the life cycles of the energy carrier and the necessary infrastructure. The results were presented from two perspectives: the total environmental impact and global warming potential. In order to create a roadmap, an original method for choosing sustainable development pathways was prepared. It was shown that the modernization of conventional bus fleets using hydrogen and electrical pathways can provide significant environmental benefits from both perspectives, but especially in terms of global warming potential. It was emphasized that attention should be paid to the use of low- and zero-emission energy sources, because their impact often strongly influenced the final environmental judgment. The energy carrier consumption also had a strong impact on the results obtained, and that is why efforts should be made to reduce it. In addition, it was confirmed that hydrogen and electricity production systems based on electricity generated by a waste-to-energy plant could be an environmentally reasonable dual solution for both sustainable waste management and meeting transport needs.

Suggested Citation

  • Lubecki, Adrian & Szczurowski, Jakub & Zarębska, Katarzyna, 2023. "A comparative environmental Life Cycle Assessment study of hydrogen fuel, electricity and diesel fuel for public buses," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011303
    DOI: 10.1016/j.apenergy.2023.121766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afnan Fayez Eliyan & Mohamed Haouari & Ahmad Sleiti, 2024. "Decarbonizing Public Transportation: A Multi-Criteria Comparative Analysis of Battery Electric Buses and Fuel Cell Electric Buses," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    2. Viviane Fiona Mathilde Remy & David Vernez & Irina Guseva Canu, 2024. "Technological Evolution in the Swiss Bus Fleet from 1940 to 2022: An Inventory and Database for Research Applications," Sustainability, MDPI, vol. 16(19), pages 1-17, September.
    3. Pivac, Ivan & Šimunović, Jakov & Barbir, Frano & Nižetić, Sandro, 2024. "Reduction of greenhouse gases emissions by use of hydrogen produced in a refinery by water electrolysis," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.