IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8595-d1491683.html
   My bibliography  Save this article

A Novel Polymerized Sulfur Concrete for Underground Hydrogen Storage in Lined Rock Caverns

Author

Listed:
  • Abdel-Mohsen O. Mohamed

    (Uberbinder Limited, Littlemore, Oxford OX4 4GP, UK)

  • Maisa El Gamal

    (Department of Environmental Sciences & Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates)

Abstract

Hydrogen is increasingly recognized as a viable solution to meet the growing global energy demand, making large-scale hydrogen storage essential for successfully realizing a full-scale hydrogen economy. Geological formations, such as depleted oil and gas reservoirs, salt caverns, and aquifers, have been identified as potential storage options. Additionally, unconventional methods like manufactured lined rock caverns and abandoned coal mines are gaining interest. This study introduces polymerized sulfur concrete (PSC) as a promising alternative to replace the current construction systems, which rely on Portland cement concrete and lining materials like stainless steel or polypropylene plastic liners. The paper presents the formulation of PSC, optimization of its compositional design, and evaluation of its physico-mechanical-chemical properties. The results demonstrate that PSC offers excellent mechanical strength, chemical resistance, and low permeability, making it highly suitable for underground hydrogen storage in lined rock caverns. The results showed that the manufactured PSC exhibits excellent physicochemical properties in terms of compressive strength (35–58 MPa), density (2.277–2.488 g/cm 3 ), setting time (30–60 min), curing time (24 h), air content (4–8%), moisture absorption potential (0.17–0.3%), maximum volumetric shrinkage (1.69–2.0%), and maximum service temperature (85–90 °C). Moreover, the PSC is nonconductive and classified with zero flame spread classification and fuel contribution. In addition, the SPC was found to be durable in harsh environmental conditions involving pressure, humidity, and pH variations. It is also capable of resisting corrosive environments. In addition, the statistical modeling indicates that an overall mixture proportion of 32.5 wt.% polymerized sulfur, 32.5 wt.% dune sands, 17.5 wt. % LFS, and 17.5 wt.% GGBFS appear optimal for density values ranging from 2.43 to 2.44 g/cm 3 and compressive strength ranging from 52.0 to 53.2 MPa, indicating that the PSC can sustain formation pressure up to about 5.3 km below the ground surface. Therefore, by addressing the critical limitations of traditional materials, PSC proves to be a durable, environmentally sustainable solution for lined rock caverns, reducing the risk of hydrogen leakage and ensuring the integrity of storage systems.

Suggested Citation

  • Abdel-Mohsen O. Mohamed & Maisa El Gamal, 2024. "A Novel Polymerized Sulfur Concrete for Underground Hydrogen Storage in Lined Rock Caverns," Sustainability, MDPI, vol. 16(19), pages 1-33, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8595-:d:1491683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    4. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    5. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    6. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    7. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    8. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    9. Leszek Lankof, 2020. "Assessment of Permian Zubers as the Host Rock for Deep Geological Disposal," Energies, MDPI, vol. 13(9), pages 1-32, May.
    10. Jafari Raad, Seyed Mostafa & Leonenko, Yuri & Hassanzadeh, Hassan, 2022. "Hydrogen storage in saline aquifers: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    12. Hao Lan & Guiyun Wang & Kun Zhao & Yuntang He & Tianlei Zheng, 2022. "Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles," Energies, MDPI, vol. 15(19), pages 1-13, October.
    13. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    15. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    16. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    17. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    19. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    20. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8595-:d:1491683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.