IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8584-d1491518.html
   My bibliography  Save this article

Operational and Design Factors in Air Staging and Their Effects on Fouling from Biomass Combustion

Author

Listed:
  • Akram Elsebaie

    (School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia)

  • Mingming Zhu

    (Faculty of Engineering and Applied Sciences, Cranfield University, Bedford MK43 0AL, UK)

  • Yasir M. Al-Abdeli

    (School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia)

Abstract

The global transition towards a carbon-neutral economy highlights the potential of biomass as a renewable fuel source. However, the sustainability of biomass energy systems is challenged by its complex fouling behaviours during combustion. This study investigates the impact of air staging on mitigating fouling in biomass combustion. By optimising the secondary-to-total air flowrate ratio (Qs/Qt) and the positioning of secondary air, this research investigates the impact of operational and design parameters on fouling deposits in biomass combustion. A fixed-bed combustor was used for the experiments, with hardwood pellets as fuel. This study employed TGA and SEM to analyse the fouling deposit samples’ chemical composition and morphology. First, visible inspection established that the inclination of fouling matter to accumulate on cooled deposition pipes is indeed sensitive to Qs/Qt. The results show that lower Qs/Qt ratios (<0.50) lead to heavier, stickier fouling. Peak temperatures in the fuel bed increase with higher Qs/Qt, enhancing the combustion efficiency and affecting the fouling characteristics. SEM analysis further shows that higher Qs/Qt ratios produce finer, more dispersed fouling particles, whereas lower ratios result in larger, more cohesive particles. These findings provide actionable insights for enhancing the sustainability of biomass energy systems and minimising their environmental impact.

Suggested Citation

  • Akram Elsebaie & Mingming Zhu & Yasir M. Al-Abdeli, 2024. "Operational and Design Factors in Air Staging and Their Effects on Fouling from Biomass Combustion," Sustainability, MDPI, vol. 16(19), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8584-:d:1491518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    2. Joanna Wnorowska & Waldemar Gądek & Sylwester Kalisz, 2020. "Statistical Model for Prediction of Ash Fusion Temperatures from Additive Doped Biomass," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    4. Chen, Guanyi & Wenga, Terrence & Ma, Wenchao & Lin, Fawei, 2019. "Theoretical and experimental study of gas-phase corrosion attack of Fe under simulated municipal solid waste combustion: Influence of KCl, SO2, HCl, and H2O vapour," Applied Energy, Elsevier, vol. 247(C), pages 630-642.
    5. Dan Yu & Caihong Zhang & Siyi Wang & Lan Zhang, 2023. "Evolutionary Game and Simulation Analysis of Power Plant and Government Behavior Strategies in the Coupled Power Generation Industry of Agricultural and Forestry Biomass and Coal," Energies, MDPI, vol. 16(3), pages 1-19, February.
    6. Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
    7. Kanmaniraja Radhakrishnan & Jun Su Park, 2024. "Flow and Heat Transfer Characteristics of Superheater Tube of a Pulverized Coal-Fired Boiler Using Conjugate Heat Transfer Modeling," Energies, MDPI, vol. 17(5), pages 1-20, February.
    8. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    9. Yongtie, Cai & Zhimin, Zheng & Guang, Zeng & Wen, Wen & Lei, Luo & Wenming, Yang, 2022. "Quantitative phase analysis and rietveld texture determination of minerals in ash deposits in a 11.2 MW moving grate boiler," Energy, Elsevier, vol. 255(C).
    10. Álvarez-Bermúdez, César & Anca-Couce, Andrés & Chapela, Sergio & Scharler, Robert & Buchmayr, Markus & Gómez, Miguel Ángel & Porteiro, Jacobo, 2023. "Validation of a biomass conversion mechanism by Eulerian modelling of a fixed-bed system under low primary air conditions," Renewable Energy, Elsevier, vol. 215(C).
    11. Wang, Junlei & Zhang, Chengyun & Hu, Guobiao & Liu, Xiaowei & Liu, Huadong & Zhang, Zhien & Das, Raj, 2022. "Wake galloping energy harvesting in heat exchange systems under the influence of ash deposition," Energy, Elsevier, vol. 253(C).
    12. Zhu, Yiming & Su, Haining & Qiu, Tongyu & Zhai, Yingmei & Mikulčić, Hrvoje & Wang, Xuebin & Zhang, Lan & Xie, Jun & Yang, Tianhua, 2024. "Modelling of fly ash viscous deposition and slagging prediction of biomass-fired boiler," Renewable Energy, Elsevier, vol. 227(C).
    13. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    14. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    15. Hernik, Bartłomiej & Wnorowska, Joanna, 2022. "Numerical research on combustion processes and deposit formation on the deposition probe in the pulverized drop chamber," Renewable Energy, Elsevier, vol. 187(C), pages 1-13.
    16. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    17. Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zhou, Anqi & Cai, Yongtie & Zeng, Guang & Xu, Hongpeng, 2021. "Development of a mechanistic fouling model for predicting deposit formation in a woodchip-fired grate boiler," Energy, Elsevier, vol. 220(C).
    18. Lim, Jonghun & Kim, Junghwan, 2022. "Optimizing ash deposit removal system to maximize biomass recycling as renewable energy for CO2 reduction," Renewable Energy, Elsevier, vol. 190(C), pages 1006-1017.
    19. Zheng, Zhimin & Yang, Wenming & Cai, Yongtie & Wang, Qingxiang & Zeng, Guang, 2020. "Dynamic simulation on ash deposition and heat transfer behavior on a staggered tube bundle under high-temperature conditions," Energy, Elsevier, vol. 190(C).
    20. Xiong, Yao & Liu, Yinhe & Guan, Yu & Liu, Huizhen & Geng, Sajie, 2022. "Numerical study on dynamic ash deposition and heat transfer characteristics of radiant syngas cooler," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8584-:d:1491518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.