IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6929-d1455218.html
   My bibliography  Save this article

Investigation of Thermoregulation Effect of Stabilized Phase Change Gypsum Board with Different Structures in Buildings

Author

Listed:
  • Feng Gao

    (College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    Power China Kunming Survey, Design and Research Institute Co., Ltd., Kunming 650551, China)

  • Xin Xiao

    (College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650550, China)

  • Zhao Shu

    (College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China)

  • Ke Zhong

    (College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China)

  • Yunfeng Wang

    (Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650550, China)

  • Ming Li

    (Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650550, China)

Abstract

The energy consumption in buildings is high currently, leading to the development of the building envelope with phase change material (PCM), while the application of PCMs to the building envelope has the potential to effectively regulate the temperature variations in the inner surfaces of walls. Eutectic PCM consists of lauric acid, myristic acid, and stearic acid (LA-MA-SA) and was synthesized first, while expanded graphite (EG) and diamote (DE) were used as additives. LA-MA-SA/10 wt.% EG/10 wt.% DE composite PCM was synthesized via the impregnation method; then, the phase change layer was compressed and formed under a pressure of 10 MPa. The sandwich phase change gypsum board was built with three layers, considering the phase change layer on the outside, middle and indoor sides of the board, respectively. The thermal responses of sandwich phase change gypsum boards were considered under various radiation conditions at controlled temperatures of 37 °C, 40 °C, 45 °C and 50 °C. The results indicated that the gypsum board with the addition of 16.7 wt.% composite PCMs showed a better relative time duration of thermal comfort in comparison with pure gypsum board. The indoor heating rate slowed down, and the environmental temperature fluctuation was within a smaller range, because of the latent heat of the phase change gypsum board. Comparing the phase change gypsum boards at different interlayer positions, we found that the phase change gypsum board with an interlayer on the indoor side shows better thermal performance and a relatively longer time duration of thermal comfort, e.g., when the setting temperatures were 37 °C, 40 °C, 45 °C and 50 °C, respectively, the relative time durations of the thermal comfort of the sandwich phase change gypsum board were 4825 s, 3160 s, 1980 s and 1710 s. This study provides insights into the thermoregulation performance of phase change walls, where the utilization of a PCM in a wall can increase thermal capacity and enhance the inner-zone thermal comfort. The findings can provide guidelines for phase change walls to ensure sustainable practices in the energy savings of buildings.

Suggested Citation

  • Feng Gao & Xin Xiao & Zhao Shu & Ke Zhong & Yunfeng Wang & Ming Li, 2024. "Investigation of Thermoregulation Effect of Stabilized Phase Change Gypsum Board with Different Structures in Buildings," Sustainability, MDPI, vol. 16(16), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6929-:d:1455218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abden, Md Jaynul & Tao, Zhong & Pan, Zhu & George, Laurel & Wuhrer, Richard, 2020. "Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation," Applied Energy, Elsevier, vol. 259(C).
    2. Xin Xiao & Qian Hu & Huansong Jiao & Yunfeng Wang & Ali Badiei, 2023. "Simulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Walls," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    3. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
    4. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    5. Fu, Lulu & Wang, Qianhao & Ye, Rongda & Fang, Xiaoming & Zhang, Zhengguo, 2017. "A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation," Renewable Energy, Elsevier, vol. 114(PB), pages 733-743.
    6. Li, Chuanchang & Wang, Mengfan & Xie, Baoshan & Ma, Huan & Chen, Jian, 2020. "Enhanced properties of diatomite-based composite phase change materials for thermal energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 265-274.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miroslava Kavgic & Yaser Abdellatef, 2021. "Temperature Control to Improve Performance of Hempcrete-Phase Change Material Wall Assemblies in a Cold Climate," Energies, MDPI, vol. 14(17), pages 1-23, August.
    2. Nelson, James & Johnson, Nathan G. & Chinimilli, Prudhvi Tej & Zhang, Wenlong, 2019. "Residential cooling using separated and coupled precooling and thermal energy storage strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Hongxia Zhou & Åke Fransson & Thomas Olofsson, 2021. "An Explicit Finite Element Method for Thermal Simulations of Buildings with Phase Change Materials," Energies, MDPI, vol. 14(19), pages 1-20, September.
    4. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    5. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
    6. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    7. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    12. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    13. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
    14. Al-Jethelah, Manar & Tasnim, Syeda Humaira & Mahmud, Shohel & Dutta, Animesh, 2018. "Nano-PCM filled energy storage system for solar-thermal applications," Renewable Energy, Elsevier, vol. 126(C), pages 137-155.
    15. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    16. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
    17. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
    18. Sun, Ying & Yuan, Xingzhou & Wen, Jiabao & Yang, Zhanxu, 2024. "The surface and interlayer modification of montmorillonite and its potential application for thermal energy storage," Renewable Energy, Elsevier, vol. 225(C).
    19. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    20. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6929-:d:1455218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.