The surface and interlayer modification of montmorillonite and its potential application for thermal energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.120282
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paneliya, Sagar & Khanna, Sakshum & Utsav, & Singh, Ayush Pratap & Patel, Yash Kumar & Vanpariya, Anjali & Makani, Nisha Hiralal & Banerjee, Rupak & Mukhopadhyay, Indrajit, 2021. "Core shell paraffin/silica nanocomposite: A promising phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 591-599.
- Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
- Li, Chuanchang & Wang, Mengfan & Xie, Baoshan & Ma, Huan & Chen, Jian, 2020. "Enhanced properties of diatomite-based composite phase change materials for thermal energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 265-274.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
- Gambade, Julien & Noël, Hervé & Glouannec, Patrick & Magueresse, Anthony, 2023. "Numerical model of intermittent solar hot water production," Renewable Energy, Elsevier, vol. 218(C).
- Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Zhang, Xiangguo & Li, Yuqing & Luo, Chunhuan & Pan, Chongchao, 2021. "Fabrication and properties of novel tubular carbon fiber-ionic liquids/stearic acid composite PCMs," Renewable Energy, Elsevier, vol. 177(C), pages 411-421.
- Khanna, Sakshum & Paneliya, Sagar & Prajapati, Parth & Mukhopadhyay, Indrajit & Jouhara, Hussam, 2022. "Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications," Energy, Elsevier, vol. 250(C).
- Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
- Zhang, Ting & Zhang, Tuodi & Zhang, Jing & Zhang, Deyi & Guo, Pengran & Li, Hongxia & Li, Chunlei & Wang, Yi, 2021. "Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties," Renewable Energy, Elsevier, vol. 165(P1), pages 504-513.
- Feng Gao & Xin Xiao & Zhao Shu & Ke Zhong & Yunfeng Wang & Ming Li, 2024. "Investigation of Thermoregulation Effect of Stabilized Phase Change Gypsum Board with Different Structures in Buildings," Sustainability, MDPI, vol. 16(16), pages 1-13, August.
- Li, Chuanchang & Wang, Mengfan & Xie, Baoshan & He, Ya-Ling, 2024. "Carbon-decorated diatomite stabilized lauric acid-stearic acid as composite phase change materials for photo-to-thermal conversion and storage," Renewable Energy, Elsevier, vol. 229(C).
- Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Popli, Sakshi & Singh, Gurjeet & Sharma, R.K. & Sari, Ahmet, 2022. "Effect of simultaneous & consecutive melting/solidification of phase change material on domestic solar water heating system," Renewable Energy, Elsevier, vol. 188(C), pages 329-348.
- Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).
- Rathore, Pushpendra Kumar Singh & Shukla, Shailendra kumar, 2021. "Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications," Renewable Energy, Elsevier, vol. 176(C), pages 295-304.
- Manoj Kumar Pasupathi & Karthick Alagar & Michael Joseph Stalin P & Matheswaran M.M & Ghosh Aritra, 2020. "Characterization of Hybrid-nano/Paraffin Organic Phase Change Material for Thermal Energy Storage Applications in Solar Thermal Systems," Energies, MDPI, vol. 13(19), pages 1-15, September.
- Lioua Kolsi & Ahmed Kadhim Hussein & Walid Hassen & Lotfi Ben Said & Badreddine Ayadi & Wajdi Rajhi & Taher Labidi & Ali Shawabkeh & Katta Ramesh, 2023. "Numerical Study of a Phase Change Material Energy Storage Tank Working with Carbon Nanotube–Water Nanofluid under Ha’il City Climatic Conditions," Mathematics, MDPI, vol. 11(4), pages 1-27, February.
More about this item
Keywords
Phase change materials; Montmorillonite; Interlayer intercalation; Hydrophobic modification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.