IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6892-d1454149.html
   My bibliography  Save this article

Exploring Appropriate Search Engine Data for Interval Tourism Demand Forecasting Responding a Public Crisis in Macao: A Combined Bayesian Model

Author

Listed:
  • Ru-Xin Nie

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Chuan Wu

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • He-Ming Liang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Public crises can bring unprecedented damage to the tourism industry and challenges to tourism demand forecasting, which is essential for crisis management and sustainable development. Existing studies mainly focused on point forecasts, but point forecasts may not be enough for the uncertain environments of public crises. This study proposes a combined Bayesian interval tourism demand forecasting model based on a forgetting curve. Moreover, considering tourists’ travel plans may be adjusted due to changing crisis situations, the choice of search engine data for forecasting tourism demand is investigated and incorporated into the proposed model to yield reliable results. Through an empirical study, this study figures out that the Baidu Index had better tourism predictive capabilities before the public crisis, whereas the Google Index effectively captured short-term fluctuations of tourism demand within the crisis period. The results also indicate that integrating both Baidu and Google Index data obtains the best prediction performance after the crisis outbreak. Our main contribution is that this study can generate flexible forecasting results in the interval form, which can effectively handle uncertainties in practice and formulate control measures for practitioners. Another novelty is successfully discovering how to select appropriate search engine data to improve the performance of tourism demand forecasts across different stages of a public crisis, thus benefiting daily operations and crisis management in the tourism sector.

Suggested Citation

  • Ru-Xin Nie & Chuan Wu & He-Ming Liang, 2024. "Exploring Appropriate Search Engine Data for Interval Tourism Demand Forecasting Responding a Public Crisis in Macao: A Combined Bayesian Model," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6892-:d:1454149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    2. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    3. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    4. Qiu, Richard T.R. & Wu, Doris Chenguang & Dropsy, Vincent & Petit, Sylvain & Pratt, Stephen & Ohe, Yasuo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team," Annals of Tourism Research, Elsevier, vol. 88(C).
    5. Dong Zhang & Pengkun Wu & Chong Wu & Eric W. T. Ngai, 2024. "Forecasting duty-free shopping demand with multisource data: a deep learning approach," Annals of Operations Research, Springer, vol. 339(1), pages 861-887, August.
    6. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    7. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    8. Thabang Mathonsi & Terence L. van Zyl, 2021. "A Statistics and Deep Learning Hybrid Method for Multivariate Time Series Forecasting and Mortality Modeling," Forecasting, MDPI, vol. 4(1), pages 1-25, December.
    9. Llewellyn, Mary & Ross, Gordon & Ryan-Saha, Joshua, 2023. "COVID-era forecasting: Google trends and window and model averaging," Annals of Tourism Research, Elsevier, vol. 103(C).
    10. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
    2. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    3. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    4. Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
    5. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Wanhai You & Yuming Huang & Chien‐Chiang Lee, 2024. "Forecasting tourist flows in the COVID‐19 era using nonparametric mixed‐frequency VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 473-489, March.
    8. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    9. Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
    10. Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
    11. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    12. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    13. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    14. İhsan Erdem Kayral & Tuğba Sarı & Nisa Şansel Tandoğan Aktepe, 2023. "Forecasting the Tourist Arrival Volumes and Tourism Income with Combined ANN Architecture in the Post COVID-19 Period: The Case of Turkey," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    15. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    16. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    17. Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
    18. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    19. Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    20. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6892-:d:1454149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.