IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6849-d1453359.html
   My bibliography  Save this article

Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data

Author

Listed:
  • Tatiana Ermolieva

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Petr Havlik

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Andrey Lessa-Derci-Augustynczik

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Stefan Frank

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Juraj Balkovic

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Rastislav Skalsky

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Andre Deppermann

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Mahdi (Andrè) Nakhavali

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Nadejda Komendantova

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Taher Kahil

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Gang Wang

    (Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China)

  • Christian Folberth

    (International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria)

  • Pavel S. Knopov

    (Institute of Cybernetics, National Academy of Sciences of Ukraine, 03187 Kyiv, Ukraine)

Abstract

Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.

Suggested Citation

  • Tatiana Ermolieva & Petr Havlik & Andrey Lessa-Derci-Augustynczik & Stefan Frank & Juraj Balkovic & Rastislav Skalsky & Andre Deppermann & Mahdi (Andrè) Nakhavali & Nadejda Komendantova & Taher Kahil , 2024. "Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6849-:d:1453359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    2. Jones, C. A. & Dyke, P. T. & Williams, J. R. & Kiniry, J. R. & Benson, V. W. & Griggs, R. H., 1991. "EPIC: An operational model for evaluation of agricultural sustainability," Agricultural Systems, Elsevier, vol. 37(4), pages 341-350.
    3. Wriedt, Gunter & van der Velde, Marijn & Aloe, Alberto & Bouraoui, Fayal, 2009. "A European irrigation map for spatially distributed agricultural modelling," Agricultural Water Management, Elsevier, vol. 96(5), pages 771-789, May.
    4. Tatiana Ermolieva & Petr Havlík & Yuri Ermoliev & Aline Mosnier & Michael Obersteiner & David Leclère & Nikolay Khabarov & Hugo Valin & Wolf Reuter, 2016. "Integrated Management of Land Use Systems under Systemic Risks and Security Targets: A Stochastic Global Biosphere Management Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 584-601, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick S. Ward & Raymond J. G. M. Florax & Alfonso Flores-Lagunes, 2014. "Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 199-226.
    2. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    3. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    4. Kalemli-Özcan, Sebnem & Nikolsko–Rzhevskyy, Alex & Kwak, Jun Hee, 2020. "Does trade cause capital to flow? Evidence from historical rainfall," Journal of Development Economics, Elsevier, vol. 147(C).
    5. Janet Currie & Joshua Graff Zivin & Katherine Meckel & Matthew Neidell & Wolfram Schlenker, 2013. "Something in the water: contaminated drinking water and infant health," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 46(3), pages 791-810, August.
    6. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    8. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    9. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    10. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    11. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    12. Bruce Anderson, 2012. "Intensification of seasonal extremes given a 2°C global warming target," Climatic Change, Springer, vol. 112(2), pages 325-337, May.
    13. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    14. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    15. A. P. Moxey & B. White & R. A. Sanderson & S. P. Rushton, 1995. "An Approach To Linking An Ecological Vegetation Model To An Agricultural Economic Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 381-397, September.
    16. Ramsey, A. Ford & Tack, Jesse B. & Balota, Maria, 2021. "Double or Nothing: Impacts of Warming on Crop Quantity, Quality, and Revenue," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(1), January.
    17. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    18. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    19. Mason, Charles F. & Polasky, Stephen & Tarui, Nori, 2017. "Cooperation on climate-change mitigation," European Economic Review, Elsevier, vol. 99(C), pages 43-55.
    20. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6849-:d:1453359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.