IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6471-d1445074.html
   My bibliography  Save this article

Exploring New Avenues in Sustainable Urban Development: Ecological Carbon Dynamics of Park City in Chengdu

Author

Listed:
  • Lin Tang

    (Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
    The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China)

  • Jing Wang

    (Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
    The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China)

  • Luo Xu

    (Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
    The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China)

  • Heng Lu

    (Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
    The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China)

Abstract

The close relationship between land use and carbon stock is crucial for regional carbon balance, territorial and spatial planning, and the sustainable development of ecosystems. As a pioneer of Park Cities, Chengdu plays a vital role in Chinese cities. To investigate the impact of Park City construction on carbon stock, this study adopted a new perspective, the Park City perspective, using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to analyze the spatial and temporal differences in carbon stock. Additionally, we used Geographic Detector to analyze the driving factors of carbon stock in Chengdu. Based on the carbon peaking and carbon neutrality goals (peaking carbon dioxide emissions before 2030 and achieving carbon neutrality before 2060), we simulated the carbon stock in Chengdu for the years 2030 and 2060. Simultaneously, combining the Future Land Use Simulation (FLUS) model, we simulated the changing trends of carbon stock in Chengdu under three scenarios: the natural development scenario (NDS), cultivated land protection scenario (CLDS), and Park City scenario (PCS). The results show the following: (1) After the construction of the Park City, the quality of forest land improved, resulting in an increase in forest carbon stock by 1.19 × 10 6 tons. (2) Compared to the scenario without Park City construction, the implementation of the Park City led to a total carbon stock increase of 3.75 × 10 5 tons, with forest carbon stock increasing by 7.48 × 10 5 tons. (3) The PCS is the most conducive to achieving the carbon peaking and carbon neutrality goals, with the highest carbon stock. (4) Carbon stock is mainly driven by socio-economic factors. Land use/land cover (LULC) has the greatest explanatory power, with a q value of 0.9. The Park City is of great significance for an increase in carbon stock in Chengdu.

Suggested Citation

  • Lin Tang & Jing Wang & Luo Xu & Heng Lu, 2024. "Exploring New Avenues in Sustainable Urban Development: Ecological Carbon Dynamics of Park City in Chengdu," Sustainability, MDPI, vol. 16(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6471-:d:1445074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    2. Shuaijun Yue & Guangxing Ji & Weiqiang Chen & Junchang Huang & Yulong Guo & Mingyue Cheng, 2023. "Spatial and Temporal Variability Characteristics of Future Carbon Stocks in Anhui Province under Different SSP Scenarios Based on PLUS and InVEST Models," Land, MDPI, vol. 12(9), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    4. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    5. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    6. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    7. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    8. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    9. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    10. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    11. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    12. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    13. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    14. Zhencheng Xing & Yanyan Ma & Lan Luo & Haikun Wang, 2024. "Harmonizing economies and ecologies: Towards an equitable provincial carbon quota allocation for China’s peak emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    15. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    16. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    17. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    18. Jian Ni, 2013. "Carbon storage in Chinese terrestrial ecosystems: approaching a more accurate estimate," Climatic Change, Springer, vol. 119(3), pages 905-917, August.
    19. Shenghang Wang & Shen Tan & Jiaming Xu, 2023. "Evaluation and Implication of the Policies towards China’s Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    20. Mengyao Li & Hongxia Luo & Zili Qin & Yuanxin Tong, 2023. "Spatial-Temporal Simulation of Carbon Storage Based on Land Use in Yangtze River Delta under SSP-RCP Scenarios," Land, MDPI, vol. 12(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6471-:d:1445074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.