IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5492-d1423994.html
   My bibliography  Save this article

Preparing for Fully Autonomous Vehicles in Australian Cities: Land-Use Planning—Adapting, Transforming, and Innovating

Author

Listed:
  • Hans Westerman

    (School of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia)

  • John Black

    (School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia)

Abstract

A literature review found no evidence that there is any understanding of what it takes to plan land uses for the transition to fully autonomous vehicles at the precinct level, nor any conceptual agreement on the nature of the transformation of roads and their frontages. The methodology is based on the authors’ previous research into road friction and impact, which led to the production of Australian government guidelines. A case study of the City of Unley, South Australia, demonstrates the principles of risk analysis and risk management. Examples are then given on how to modify road movement corridors and adjacent land-use precincts in low-density, car-dependent environments, in high-density mixed land-use areas, in consolidating residential lots along movement corridors, and in areas with mobility hubs, all illustrated using conceptual sketches and plans. Directions for further research, of which collaborative workshops are needed involving different disciplinary perspectives on urban planning are identified.

Suggested Citation

  • Hans Westerman & John Black, 2024. "Preparing for Fully Autonomous Vehicles in Australian Cities: Land-Use Planning—Adapting, Transforming, and Innovating," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5492-:d:1423994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manivasakan, Hesavar & Kalra, Riddhi & O'Hern, Steve & Fang, Yihai & Xi, Yinfei & Zheng, Nan, 2021. "Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads – Current practice and a case study of Melbourne, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 36-53.
    2. Fábio Duarte & Carlo Ratti, 2018. "The Impact of Autonomous Vehicles on Cities: A Review," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(4), pages 3-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    2. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    3. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    4. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    5. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    6. Namgung, Hyewon & Fujiwara, Akimasa & Yamamoto, Jenny & Zhang, Junyi, 2023. "Small and medium-sized taxi firm operators' stated choices of future business models: A case study in Japan based on hybrid choice model with panel effects," Research in Transportation Economics, Elsevier, vol. 101(C).
    7. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    8. Bing Xia & Jindong Wu & Jiaqi Wang & Yitao Fang & Haodi Shen & Jingli Shen, 2021. "Sustainable Renewal Methods of Urban Public Parking Spaces under the Scenario of Shared Autonomous Vehicles (SAV): A Review and a Proposal," Sustainability, MDPI, vol. 13(7), pages 1-21, March.
    9. Sikai Chen & Shuya Zong & Tiantian Chen & Zilin Huang & Yanshen Chen & Samuel Labi, 2023. "A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    10. Cheng, Shuo & Li, Liang & Chen, Xiang & Fang, Sheng-nan & Wang, Xiang-yu & Wu, Xiu-heng & Li, Wei-bing, 2020. "Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity," Applied Energy, Elsevier, vol. 268(C).
    11. Tscharaktschiew, Stefan & Reimann, Felix, 2023. "The economics of speed choice and control in the presence of driverless vehicle cruising and parking-as-a-substitute-for-cruising," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    12. Bin-Nun, Amitai Y. & Binamira, Isabel, 2020. "A framework for the impact of highly automated vehicles with limited operational design domains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 174-188.
    13. Mordue, Greig & Yeung, Anders & Wu, Fan, 2020. "The looming challenges of regulating high level autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 174-187.
    14. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    15. Acheampong, Ransford A. & Legacy, Crystal & Kingston, Richard & Stone, John, 2023. "Imagining urban mobility futures in the era of autonomous vehicles—insights from participatory visioning and multi-criteria appraisal in the UK and Australia," Transport Policy, Elsevier, vol. 136(C), pages 193-208.
    16. Pettigrew, Simone & Booth, Leon & Farrar, Victoria & Brown, Julie & Karl, Charles & Godic, Branislava & Vidanaarachchi, Rajith & Thompson, Jason, 2024. "Public support for proposed government policies to optimise the social benefits of autonomous vehicles," Transport Policy, Elsevier, vol. 149(C), pages 264-270.
    17. Sajjad Shafiei & Ziyuan Gu & Hanna Grzybowska & Chen Cai, 2023. "Impact of self-parking autonomous vehicles on urban traffic congestion," Transportation, Springer, vol. 50(1), pages 183-203, February.
    18. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 0. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-23.
    19. Agnieszka Dudziak & Monika Stoma & Andrzej Kuranc & Jacek Caban, 2021. "Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland," Energies, MDPI, vol. 14(18), pages 1-16, September.
    20. Dahlen Silva & Dávid Földes & Csaba Csiszár, 2021. "Autonomous Vehicle Use and Urban Space Transformation: A Scenario Building and Analysing Method," Sustainability, MDPI, vol. 13(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5492-:d:1423994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.