IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5389-d1421658.html
   My bibliography  Save this article

Evolutionary Dynamics of Passive Housing Initiatives in New Rural Construction

Author

Listed:
  • Yingrui Ma

    (College of Art and Design, Jilin Jianzhu University, Changchun 130118, China
    Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Chao Wu

    (School of Economics and Management, Jilin Jianzhu University, Changchun 130118, China)

  • Xindong Wei

    (School of International Exchange, Jilin Jianzhu University, Changchun 130118, China)

  • Weijun Gao

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Lei Sun

    (School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China)

Abstract

In the context of China’s ambitious dual carbon goals, this study introduces an innovative reward–penalty incentive mechanism, grounded in evolutionary game theory, to develop a tripartite evolutionary game model concerning the construction of passive rural housing. This research meticulously analyzes the equilibrium and stability strategies of all involved parties and employs data simulation to examine the influence of varying parameters on the game dynamics. Our findings reveal that the government’s cost–benefit calculations significantly influence its decisions regarding passive housing initiatives. The study identifies optimal cost and benefit strategies for various developmental phases. Furthermore, the level of governmental rewards and penalties plays a crucial role in determining whether enterprises and farmers opt for passive housing solutions. The study establishes the efficacy of different incentive schemes at various stages. Importantly, the economic interests of enterprises and farmers are pivotal in their decision-making process regarding passive housing. The study advocates for a comprehensive set of measures to safeguard these interests, with a special emphasis on protecting farmers. In conclusion, this research offers substantial guidance for policy decisions aimed at transforming existing rural housing into passive housing, thereby aligning with China’s environmental and sustainability objectives.

Suggested Citation

  • Yingrui Ma & Chao Wu & Xindong Wei & Weijun Gao & Lei Sun, 2024. "Evolutionary Dynamics of Passive Housing Initiatives in New Rural Construction," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5389-:d:1421658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    2. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Yanbin Li & Jinzhong Li & Yun Li, 2024. "Can pumped-storage power stations stimulate rural revitalization? Evidence from the four-party evolutionary game," Journal of Evolutionary Economics, Springer, vol. 34(3), pages 595-645, July.
    2. Zihan Zhang & Junkang Song & Wanjiang Wang, 2023. "Study on the Behavior Strategy of the Subject of Low-Carbon Retrofit of Residential Buildings Based on Tripartite Evolutionary Game," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    3. Qianwen Wu & Qiangqiang Wang & Yongwu Dai, 2023. "Analysis of Strategy Selection in Third-Party Governance of Rural Environmental Pollution," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    4. Zhang, Jiayu & Yang, Xiaodong & Wang, Hao, 2021. "Age-friendly regeneration of urban settlements in China: Game and incentives of stakeholders in decision-making," Land Use Policy, Elsevier, vol. 111(C).
    5. Caihua Zhou & Hualin Xie & Xinmin Zhang, 2019. "Does Fiscal Policy Promote Third-Party Environmental Pollution Control in China? An Evolutionary Game Theoretical Approach," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    6. Tao Chu & Jingai Ma & Yongguang Zhong & Hao Sun & Weiqiang Jia, 2024. "Shared recycling model for waste electrical and electronic equipment based on the targeted responsibility system in the context of China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-26, December.
    7. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Ding, Rui & Zhang, Zusheng, 2022. "Evolutionary dynamics of promoting electric vehicle-charging infrastructure based on public–private partnership cooperation," Energy, Elsevier, vol. 239(PD).
    8. Liu, Yang & Cui, Mengying & Gao, Xubin, 2023. "Building up scrap steel bases for perfecting scrap steel industry chain in China: An evolutionary game perspective," Energy, Elsevier, vol. 278(C).
    9. He, Yixiong & Zhang, Fengxuan & Wang, Yanwei, 2023. "How to facilitate efficient blue carbon trading? A simulation study using the game theory to find the optimal strategy for each participant," Energy, Elsevier, vol. 276(C).
    10. Tan, Yiheng & Huang, Xiying & Li, Wei, 2023. "Does blockchain-based traceability system guarantee information authenticity? An evolutionary game approach," International Journal of Production Economics, Elsevier, vol. 264(C).
    11. Li, Meng & Lu, Shibao & Li, Wei, 2022. "Stakeholders′ ecological-economic compensation of river basin: A multi-stage dynamic game analysis," Resources Policy, Elsevier, vol. 79(C).
    12. Xin Gao & Juqin Shen & Weijun He & Fuhua Sun & Zhaofang Zhang & Xin Zhang & Liang Yuan & Min An, 2019. "Multilevel Governments’ Decision-Making Process and Its Influencing Factors in Watershed Ecological Compensation," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    13. Dehai Liu & Hongyi Li & Weiguo Wang & Chuang Zhou, 2015. "Scenario forecast model of long term trends in rural labor transfer based on evolutionary games," Journal of Evolutionary Economics, Springer, vol. 25(3), pages 649-670, July.
    14. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    15. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    16. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    17. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    18. Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2023. "Evolutionary game analysis of the impact of dynamic dual credit policy on new energy vehicles after subsidy cancellation," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    19. Viossat, Yannick, 2008. "Evolutionary dynamics may eliminate all strategies used in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 27-43, July.
    20. Hui Yu & Wei Wang & Baohua Yang & Cunfang Li, 2019. "Evolutionary Game Analysis of the Stress Effect of Cross-Regional Transfer of Resource-Exhausted Enterprises," Complexity, Hindawi, vol. 2019, pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5389-:d:1421658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.