IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5296-d1419735.html
   My bibliography  Save this article

A Novel Approach for the Analysis of Ship Pollution Accidents Using Knowledge Graph

Author

Listed:
  • Junlin Hu

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Weixiang Zhou

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Pengjun Zheng

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Guiyun Liu

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

Abstract

Ship pollution accidents can cause serious harm to marine ecosystems and economic development. This study proposes a ship pollution accident analysis method based on a knowledge graph to solve the problem that complex accident information is challenging to present clearly. Based on the information of 411 ship pollution accidents along the coast of China, the Word2vec’s word vector models, BERT–BiLSTM–CRF model and BiLSTM–CRF model, were applied to extract entities and relations, and the Neo4j graph database was used for knowledge graph data storage and visualization. Furthermore, the case information retrieval and cause correlation of ship pollution accidents were analyzed by a knowledge graph. This method established 3928 valid entities and 5793 valid relationships, and the extraction accuracy of the entities and relationships was 79.45% and 82.47%, respectively. In addition, through visualization and Cypher language queries, we can clearly understand the logical relationship between accidents and causes and quickly retrieve relevant information. Using the centrality algorithm, we can analyze the degree of influence between accident causes and put forward targeted measures based on the relevant causes, which will help improve accident prevention and emergency response capabilities and strengthen marine environmental protection.

Suggested Citation

  • Junlin Hu & Weixiang Zhou & Pengjun Zheng & Guiyun Liu, 2024. "A Novel Approach for the Analysis of Ship Pollution Accidents Using Knowledge Graph," Sustainability, MDPI, vol. 16(13), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5296-:d:1419735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Chaoxun Cai & Shiyu Tian & Yuefeng Shi & Yongjun Chen & Xiaojian Li, 2024. "Influencing Factors Analysis in Railway Engineering Technological Innovation under Complex and Difficult Areas: A System Dynamics Approach," Mathematics, MDPI, vol. 12(13), pages 1-20, June.
    3. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Mei Liu & Boning Li & Hongjun Cui & Pin-Chao Liao & Yuecheng Huang, 2022. "Research Paradigm of Network Approaches in Construction Safety and Occupational Health," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    7. Valcamonico, Dario & Baraldi, Piero & Zio, Enrico & Decarli, Luca & Crivellari, Anna & Rosa, Laura La, 2024. "Combining natural language processing and bayesian networks for the probabilistic estimation of the severity of process safety events in hydrocarbon production assets," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Xia, Liqiao & Liang, Yongshi & Leng, Jiewu & Zheng, Pai, 2023. "Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Ho-Jin Cha & So-Won Choi & Eul-Bum Lee & Duk-Man Lee, 2023. "Knowledge Retrieval Model Based on a Graph Database for Semantic Search in Equipment Purchase Order Specifications for Steel Plants," Sustainability, MDPI, vol. 15(7), pages 1-37, April.
    13. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5296-:d:1419735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.