IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p5171-d1417139.html
   My bibliography  Save this article

CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal

Author

Listed:
  • Carlos Santos Silva

    (IN+/LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Diana Vieira Fernandes

    (IN+/LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
    Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA)

  • Ricardo Gomes

    (IN+/LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Francisco Pires Costa

    (IN+/LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Ligia Pinto

    (MARETEC/LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Sabrina Scuri

    (ITI/LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
    Design Department, Politecnico di Milano, 20158 Milan, Italy)

  • Andre Brito

    (Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal)

  • Baltazar Nunes

    (Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal)

  • Susana Pereira Silva

    (Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal)

Abstract

Portugal is the country in Europe where the death rate in winter and summer has the highest correlation with outdoor temperatures. The Portuguese National Institute of Public Health Ricardo Jorge has developed a national warning system for heat waves called ICARO, which has been in place since 1999 (and is the oldest in Europe). However, it presents some limitations, namely, the low spatial resolution (five regions in Portugal’s mainland), the low temporal forecasting period (one day), and the fact that it was only accessible to health authorities until very recently. This work describes the development of a new public dashboard that uses a new early warning index for extreme weather events, the CLIMAEXTREMO index, which extends the current warning system by improving the current forecasting models for risk by integrating new sources of public data and increasing the spatial and time resolution of the warnings to the municipality or the parish level. The new index is a combination of a new model to estimate the relative mortality increase (updating the model used in ICARO) together with a model of the indoor temperature of building archetypes for all municipalities and a vulnerability index that considers socio-demographic economic indicators. This work discusses the results of the new risk indicator for the heat waves that occurred in Portugal at the end of June and mid-August 2023, and it shows that the index was able to indicate a high risk for the municipalities that had an increase in the number of deaths during that period.

Suggested Citation

  • Carlos Santos Silva & Diana Vieira Fernandes & Ricardo Gomes & Francisco Pires Costa & Ligia Pinto & Sabrina Scuri & Andre Brito & Baltazar Nunes & Susana Pereira Silva, 2024. "CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5171-:d:1417139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/5171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/5171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ormandy, David & Ezratty, Véronique, 2012. "Health and thermal comfort: From WHO guidance to housing strategies," Energy Policy, Elsevier, vol. 49(C), pages 116-121.
    2. Ana Casanueva & Annkatrin Burgstall & Sven Kotlarski & Alessandro Messeri & Marco Morabito & Andreas D. Flouris & Lars Nybo & Christoph Spirig & Cornelia Schwierz, 2019. "Overview of Existing Heat-Health Warning Systems in Europe," IJERPH, MDPI, vol. 16(15), pages 1-22, July.
    3. R. Molarius & V. Könönen & P. Leviäkangas & Zulkarnain & J. Rönty & A.-M. Hietajärvi & K. Oiva, 2014. "The extreme weather risk indicators (EWRI) for the European transport system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 189-210, May.
    4. Ulrich Lindemann & Anja Stotz & Nina Beyer & Juha Oksa & Dawn A. Skelton & Clemens Becker & Kilian Rapp & Jochen Klenk, 2017. "Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves," IJERPH, MDPI, vol. 14(2), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela D’Alessandro & Andrea Rebecchi & Letizia Appolloni & Andrea Brambilla & Silvio Brusaferro & Maddalena Buffoli & Maurizio Carta & Alessandra Casuccio & Liliana Coppola & Maria Vittoria Corazza , 2023. "Re-Thinking the Environment, Cities, and Living Spaces for Public Health Purposes, According with the COVID-19 Lesson: The LVII Erice Charter," Land, MDPI, vol. 12(10), pages 1-17, September.
    2. Burlinson, Andrew & Giulietti, Monica & Law, Cherry & Liu, Hui-Hsuan, 2021. "Fuel poverty and financial distress," Energy Economics, Elsevier, vol. 102(C).
    3. Tjaša Pogačar & Zala Žnidaršič & Lučka Kajfež Bogataj & Zalika Črepinšek, 2020. "Steps Towards Comprehensive Heat Communication in the Frame of a Heat Health Warning System in Slovenia," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    4. Toshiki Kamiya & Ryo Onishi & Sachiko Kodera & Akimasa Hirata, 2019. "Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction," IJERPH, MDPI, vol. 16(24), pages 1-15, December.
    5. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    6. Zoé A Hamstead, 2024. "Thermal insecurity: Violence of heat and cold in the urban climate refuge," Urban Studies, Urban Studies Journal Limited, vol. 61(3), pages 531-548, February.
    7. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    8. Marco Morabito & Alessandro Messeri & Pascal Noti & Ana Casanueva & Alfonso Crisci & Sven Kotlarski & Simone Orlandini & Cornelia Schwierz & Christoph Spirig & Boris R.M. Kingma & Andreas D. Flouris &, 2019. "An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    9. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).
    10. Kahouli, Sondès, 2020. "An economic approach to the study of the relationship between housing hazards and health: The case of residential fuel poverty in France," Energy Economics, Elsevier, vol. 85(C).
    11. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    12. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    13. Etxebarria-Mallea, Matxalen & Oregi, Xabat & Grijalba, Olatz & Hernández-Minguillón, Rufino, 2021. "The impact of energy refurbishment interventions on annual energy demand, indoor thermal behaviour and temperature-related health risk," Energy Policy, Elsevier, vol. 153(C).
    14. Hasan Sohail & Virpi Kollanus & Pekka Tiittanen & Alexandra Schneider & Timo Lanki, 2020. "Heat, Heatwaves and Cardiorespiratory Hospital Admissions in Helsinki, Finland," IJERPH, MDPI, vol. 17(21), pages 1-11, October.
    15. B. R. M. Kingma & H. Steenhoff & J. Toftum & H. A. M. Daanen & M. A. Folkerts & N. Gerrett & C. Gao & K. Kuklane & J. Petersson & A. Halder & M. Zuurbier & S. W. Garland & L. Nybo, 2021. "ClimApp—Integrating Personal Factors with Weather Forecasts for Individualised Warning and Guidance on Thermal Stress," IJERPH, MDPI, vol. 18(21), pages 1-26, October.
    16. Hans-Guido Mücke & Jutta Maria Litvinovitch, 2020. "Heat Extremes, Public Health Impacts, and Adaptation Policy in Germany," IJERPH, MDPI, vol. 17(21), pages 1-14, October.
    17. Piotr Lewandowski & Katarzyna Salach, 2018. "Pomiar ubostwa energetycznego na podstawie danych BBGD - metodologia i zastosowanie," IBS Research Reports 01/2018, Instytut Badan Strukturalnych.
    18. Hughes, Caroline & Natarajan, Sukumar & Liu, Chunde & Chung, Woong June & Herrera, Manuel, 2019. "Winter thermal comfort and health in the elderly," Energy Policy, Elsevier, vol. 134(C).
    19. Harriet Thomson & Carolyn Snell & Stefan Bouzarovski, 2017. "Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries," IJERPH, MDPI, vol. 14(6), pages 1-20, May.
    20. Vilches, Alberto & Barrios Padura, Ángela & Molina Huelva, Marta, 2017. "Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort," Energy Policy, Elsevier, vol. 100(C), pages 283-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5171-:d:1417139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.