IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v153y2021ics0301421521001452.html
   My bibliography  Save this article

The impact of energy refurbishment interventions on annual energy demand, indoor thermal behaviour and temperature-related health risk

Author

Listed:
  • Etxebarria-Mallea, Matxalen
  • Oregi, Xabat
  • Grijalba, Olatz
  • Hernández-Minguillón, Rufino

Abstract

The reduction of energy consumption in the built environment by energy renovation strategies is an important target to deal with buildings sector's negative impact on our planet. Regardless of the potential for energy and emissions savings, building renovation has other relevant effects on users' quality of life and health that has not been so well assessed. The present study aims to contribute to current building energy efficiency targets, particularly to Spanish residential building sector, from a still non-existing integrated vision. To this end, an evaluation method was developed to discuss the impact of energy renovation interventions on annual energy demand, indoor thermal comfort and indoor thermal health risk variation. The approach was applied to an open linear residential block located in the Basque Country (northern Spain), and twelve scenarios based on three variables were analysed using DesignBuilder tool. The results obtained show a clear contrast in the impacts caused by energy refurbishment interventions. In particular, the generalized decrease in the number of hours in which indoor temperatures are within comfortable ranges is significant in contrast to the noteworthy reduction in annual energy demand. In conclusion, the results suggest new factors to be considered when updating energy renovation policies.

Suggested Citation

  • Etxebarria-Mallea, Matxalen & Oregi, Xabat & Grijalba, Olatz & Hernández-Minguillón, Rufino, 2021. "The impact of energy refurbishment interventions on annual energy demand, indoor thermal behaviour and temperature-related health risk," Energy Policy, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:enepol:v:153:y:2021:i:c:s0301421521001452
    DOI: 10.1016/j.enpol.2021.112276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521001452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    2. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Ormandy, David & Ezratty, Véronique, 2012. "Health and thermal comfort: From WHO guidance to housing strategies," Energy Policy, Elsevier, vol. 49(C), pages 116-121.
    4. Garwood, Tom Lloyd & Hughes, Ben Richard & Oates, Michael R. & O’Connor, Dominic & Hughes, Ruby, 2018. "A review of energy simulation tools for the manufacturing sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 895-911.
    5. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Itziar Modrego-Monforte & Mikel Barrena-Herrán & Olatz Grijalba, 2023. "A Multi-Criteria Analysis GIS Tool for Measuring the Vulnerability of the Residential Stock Based on Multidimensional Indices," Land, MDPI, vol. 12(8), pages 1-16, August.
    2. Silvia Perez-Bezos & Anna Figueroa-Lopez & Matxalen Etxebarria-Mallea & Xabat Oregi & Rufino Javier Hernandez-Minguillon, 2022. "Assessment of Social Housing Energy and Thermal Performance in Relation to Occupants’ Behaviour and COVID-19 Influence—A Case Study in the Basque Country, Spain," Sustainability, MDPI, vol. 14(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela D’Alessandro & Andrea Rebecchi & Letizia Appolloni & Andrea Brambilla & Silvio Brusaferro & Maddalena Buffoli & Maurizio Carta & Alessandra Casuccio & Liliana Coppola & Maria Vittoria Corazza , 2023. "Re-Thinking the Environment, Cities, and Living Spaces for Public Health Purposes, According with the COVID-19 Lesson: The LVII Erice Charter," Land, MDPI, vol. 12(10), pages 1-17, September.
    2. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Burlinson, Andrew & Giulietti, Monica & Law, Cherry & Liu, Hui-Hsuan, 2021. "Fuel poverty and financial distress," Energy Economics, Elsevier, vol. 102(C).
    4. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    6. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    7. Jakub Sokołowski & Jan Frankowski & Piotr Lewandowski, 2024. "Energy poverty, housing conditions, and self-assessed health: evidence from Poland," Housing Studies, Taylor & Francis Journals, vol. 39(9), pages 2325-2354, October.
    8. Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    9. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    10. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    11. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).
    12. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
    13. Kahouli, Sondès, 2020. "An economic approach to the study of the relationship between housing hazards and health: The case of residential fuel poverty in France," Energy Economics, Elsevier, vol. 85(C).
    14. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    15. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    16. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Zhang, Hu & Tian, Wei & Tan, Jingyuan & Yin, Juchao & Fu, Xing, 2024. "Sensitivity analysis of multiple time-scale building energy using Bayesian adaptive spline surfaces," Applied Energy, Elsevier, vol. 363(C).
    18. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    19. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    20. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:153:y:2021:i:c:s0301421521001452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.