IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p1001-d1365178.html
   My bibliography  Save this article

Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model

Author

Listed:
  • Xuebin Xie

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Yingling Huang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

Landslide displacement prediction is of great significance for the prevention and early warning of slope hazards. In order to enhance the extraction of landslide historical monitoring signals, a landslide displacement prediction method is proposed based on the decomposition of monitoring data before prediction. Firstly, based on the idea of temporal addition, the sparrow search algorithm (SSA) coupled with the variational modal decomposition (VMD) algorithm is used to decompose the total landslide displacement into trend item, periodic item and random item; then, the displacement values of the subitems are fitted by using the long and short-term memory (LSTM) neural network, and the predicted cumulative landslide displacement is obtained by adding up the predicted values of the three subsequences. Finally, the historical measured data of the Shuping landslide is taken as an example. Considering the effects of seasonal rainfall and reservoir water level rise and fall, the displacement of this landslide is predicted, and the prediction results of other traditional models are compared. The results show that the landslide displacement prediction model of SSA-VMD coupled with LSTM can predict landslide displacement more accurately and capture the characteristics of historical signals, which can be used as a reference for landslide displacement prediction.

Suggested Citation

  • Xuebin Xie & Yingling Huang, 2024. "Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1001-:d:1365178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/1001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/1001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chenhui Wang & Wei Guo, 2023. "Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longye Hu & Chaode Yan, 2024. "Evaluation of Landslide Susceptibility of Mangshan Mountain in Zhengzhou Based on GWO-1D CNN Model," Sustainability, MDPI, vol. 16(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1001-:d:1365178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.