Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Qing Ling & Qin Zhang & Jing Zhang & Lingjie Kong & Weiqi Zhang & Li Zhu, 2021. "Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 925-946, August.
- Tommaso CarlĂ & Emanuele Intrieri & Federico Traglia & Nicola Casagli, 2016. "A statistical-based approach for determining the intensity of unrest phases at Stromboli volcano (Southern Italy) using one-step-ahead forecasts of displacement time series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 669-683, October.
- Chenhui Wang & Wei Guo, 2023. "Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
- Chenhui Wang & Wei Guo, 2023. "Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
- Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
- Hong Wang & Guangyu Long & Jianxing Liao & Yan Xu & Yan Lv, 2022. "A new hybrid method for establishing point forecasting, interval forecasting, and probabilistic forecasting of landslide displacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1479-1505, March.
- Jiaqi Zhang & Xijun He, 2023. "Earthquake magnitude prediction using a VMD-BP neural network model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 189-205, May.
- Xuebin Xie & Yingling Huang, 2024. "Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
- Longye Hu & Chaode Yan, 2024. "Evaluation of Landslide Susceptibility of Mangshan Mountain in Zhengzhou Based on GWO-1D CNN Model," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
- Shidong Wu & Hengrui Ma & Abdullah M. Alharbi & Bo Wang & Li Xiong & Suxun Zhu & Lidong Qin & Gangfei Wang, 2023. "Integrated Energy System Based on Isolation Forest and Dynamic Orbit Multivariate Load Forecasting," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
More about this item
Keywords
displacement prediction; kernel extreme learning machine; variational mode decomposition; three gorges reservoir area; influencing factors;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1724-:d:1503157. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.