IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4571-d1403648.html
   My bibliography  Save this article

Assessing the Influence of Planting Dates on Sustainable Maize Production under Drought Stress Conditions

Author

Listed:
  • Huaijun Tang

    (Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Xiaoqing Xie

    (Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Lei Zhang

    (Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Cheng Liu

    (Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

Abstract

Water is one of the most precious resources and is essential to agricultural output; the biggest user of water is the agricultural sector. Several societal sectors are impacted by the problem of climate change, including agriculture, water resources, and irrigation water demand. A key element in determining sustainable crop production potential is choosing the right cultivars at the right time of year to plant. The dates on which maize is sown are greatly impacted by high summer temperatures and low spring temperatures. Water stress and the timing of sowing can have a significant impact on maize crop yield and water use efficiency. As a result, figuring out the ideal irrigation volume and sowing dates depending on local conditions is essential. A split plot layout was used to create a randomized complete block design for an experiment with five sowing dates (A, B, C, D, and E) and six hybrids (KWS3376, Xinyu 65, KWS9384, Huamei No. 1, Xinyu 102, and Heyu 187). All sowing dates and hybrids had a significant impact on the yield and yield-contributing features (leaf length, ear diameter, grain number per spike, grain breadth, hundred-grain weight, etc.) of maize crops according to the data analysis. A higher grain yield with yield features, such as ear length, number of grains per ear, and hundred-grain weight, was obtained with early-season sowing. Delayed seeding resulted in a lower crop yield. The seasonally delayed seeding of maize reduces yield and yield characteristics. Xinyu 65 produced the highest yield and yield component values of any hybrid. For improved yield and yield traits in the examined area, the study recommended planting maize hybrid Xinyu 65 early in the growing season.

Suggested Citation

  • Huaijun Tang & Xiaoqing Xie & Lei Zhang & Cheng Liu, 2024. "Assessing the Influence of Planting Dates on Sustainable Maize Production under Drought Stress Conditions," Sustainability, MDPI, vol. 16(11), pages 1-35, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4571-:d:1403648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Wang & Jun Xue & Ruizhi Xie & Bo Ming & Keru Wang & Peng Hou & Lizhen Zhang & Shaokun Li, 2022. "Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates," Agriculture, MDPI, vol. 12(1), pages 1-16, January.
    2. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    3. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    4. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    5. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    7. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    8. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    9. Yang Yang & Tianxiang Yue, 2024. "Variations of Global Compound Temperature and Precipitation Events and Associated Population Exposure Projected by the CMIP6 Multi-Model Ensemble," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    10. Reidsma, Pytrik & Ewert, Frank & Boogaard, Hendrik & Diepen, Kees van, 2009. "Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields," Agricultural Systems, Elsevier, vol. 100(1-3), pages 51-60, April.
    11. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    12. Ioannis Roussis & Dimitrios Beslemes & Chariklia Kosma & Vassilios Triantafyllidis & Anastasios Zotos & Evangelia Tigka & Antonios Mavroeidis & Stella Karydogianni & Varvara Kouneli & Ilias Travlos & , 2022. "The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato ( Lycopersicon esculentum Mill.) Seedlings," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    13. Pengyuan Wang & Shaoqiang Wang & Bin Chen & Muhammad Amir & Lei Wang & Jinghua Chen & Li Ma & Xiaobo Wang & Yuanyuan Liu & Kai Zhu, 2022. "Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis," Sustainability, MDPI, vol. 14(5), pages 1-26, February.
    14. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    15. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Verbeeck, Hans & Samson, Roeland & Granier, André & Montpied, Pierre & Lemeur, Raoul, 2008. "Multi-year model analysis of GPP in a temperate beech forest in France," Ecological Modelling, Elsevier, vol. 210(1), pages 85-103.
    17. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    18. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
    19. Smit, H.J. & Metzger, M.J. & Ewert, F., 2008. "Spatial distribution of grassland productivity and land use in Europe," Agricultural Systems, Elsevier, vol. 98(3), pages 208-219, October.
    20. Saeidnia, Fatemeh & Majidi, Mohammad Mahdi & Hosseini, Elaheh, 2023. "Simultaneous effect of water deficit and mating systems in fennel (Foeniculum vulgare mill.): Genetics of phytochemical compositions and drought tolerance," Agricultural Water Management, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4571-:d:1403648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.