IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4268-d1397396.html
   My bibliography  Save this article

Prediction and Optimization Analysis of the Performance of an Office Building in an Extremely Hot and Cold Region

Author

Listed:
  • Yunbo Liu

    (College of Architectural and Civil Engineering, Xinjiang University, Urumqi 830017, China)

  • Wanjiang Wang

    (College of Architectural and Civil Engineering, Xinjiang University, Urumqi 830017, China)

  • Yumeng Huang

    (College of Architectural and Civil Engineering, Xinjiang University, Urumqi 830017, China)

Abstract

The White Paper on Peak Carbon and Carbon Neutral Action 2022 states that China is to achieve peak carbon by 2030 and carbon neutrality by 2060. Based on the “3060 dual-carbon” goal, how to improve the efficiency of energy performance is an important prerequisite for building a low-carbon, energy-saving, green, and beautiful China. The office performance building studied in this paper is located in the urban area of Turpan, where the climate is characterized by an extremely hot summer environment and a cold winter environment. At the same time, the building is oriented east–west, with the main façade facing west, and the main façade consists of a large area of single-layer glass curtain wall, which is affected by western sunlight. As a result, there are serious problems with the building’s energy consumption, which in turn leads to excessive carbon emissions and high life cycle costs for the building. To address the above problems, this paper analyzes and optimizes the following four dimensions. First, the article creates a Convolutional Neural Network (CNN) prediction model with Total Energy Use in Buildings (TEUI), Global Warming Potential (GWP), and Life Cycle Costs (LCC) as the performance objectives. After optimization, the R 2 of the three are 0.9908, 0.9869, and 0.9969, respectively, thus solving the problem of low accuracy of traditional prediction models. Next, the NSGA-II algorithm is used to optimize the three performance objectives, which are reduced by 41.94%, 40.61%, and 31.29%, respectively. Then, in the program decision stage, this paper uses two empowered Topsis methods to optimize this building performance problem. Finally, the article analyzes the variables using two sensitivity analysis methods. Through the above research, this paper provides a framework of optimization ideas for office buildings in extremely hot and cold regions while focusing on the four major aspects of machine learning, multi-objective optimization, decision analysis, and sensitivity analysis systematically and completely. For the development of office buildings in the region, whether in the early program design or in the later stages, energy-saving measures to optimize the design have laid the foundation of important guidelines.

Suggested Citation

  • Yunbo Liu & Wanjiang Wang & Yumeng Huang, 2024. "Prediction and Optimization Analysis of the Performance of an Office Building in an Extremely Hot and Cold Region," Sustainability, MDPI, vol. 16(10), pages 1-40, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4268-:d:1397396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    2. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    3. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    4. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
    5. Lee, W.L. & Yik, F.W.H. & Jones, P., 2003. "A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings," Energy, Elsevier, vol. 28(8), pages 877-893.
    6. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    7. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
    2. Bushra, Nayab & Hartmann, Timo, 2024. "A method for design optimization of roof-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 353(PA).
    3. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    4. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    5. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    6. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    7. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    8. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    9. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    10. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    11. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    12. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    13. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    14. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    15. Al Mindeel, T. & Spentzou, E. & Eftekhari, M., 2024. "Energy, thermal comfort, and indoor air quality: Multi-objective optimization review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    16. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    17. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    18. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    19. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    20. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4268-:d:1397396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.