IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221030279.html
   My bibliography  Save this article

Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility

Author

Listed:
  • Zeng, Zhaoyun
  • Augenbroe, Godfried
  • Chen, Jianli

Abstract

The application of adaptive building envelope (ABE) is an important approach to energy conservation and carbon emissions reduction in buildings. In order to achieve high performance, both the design and control of an ABE system require optimization. Bi-level optimization is proposed for this type of problem. The greatest challenge to the application of bi-level optimization is the tremendous amount of computational resources required to solve the problem. This paper realizes bi-level optimization of ABE with a finite-difference (FD) model written in MATLAB. This FD model, compared to packaged building energy simulation (BES) programs like EnergyPlus, can potentially shorten the execution time by more than 84% and model various ABE systems whose modelling is not supported by packaged BES programs. The design and control of a ventilated façade is optimized using this model as an example. It is found that performance of the explicit constraint and the implicit constraint is similar, but their applicability is different. Moreover, design parameters have a great impact on the model predictive control (MPC) sequence. MPC, on the other hand, has the ability to reduce the ratio of the energy cost of the worst design to that of the best design from 7.41 to 3.63.

Suggested Citation

  • Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221030279
    DOI: 10.1016/j.energy.2021.122778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    2. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    3. Jin, Qian & Favoino, Fabio & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 2: A parametric study for a temperate climate," Energy, Elsevier, vol. 127(C), pages 634-649.
    4. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    5. Konstantoglou, Maria & Tsangrassoulis, Aris, 2016. "Dynamic operation of daylighting and shading systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 268-283.
    6. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    7. Liu, Mingzhe & Wittchen, Kim Bjarne & Heiselberg, Per Kvols, 2015. "Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark," Applied Energy, Elsevier, vol. 145(C), pages 43-51.
    8. Favoino, Fabio & Jin, Qian & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework," Energy, Elsevier, vol. 127(C), pages 301-309.
    9. Favoino, Fabio & Overend, Mauro & Jin, Qian, 2015. "The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies," Applied Energy, Elsevier, vol. 156(C), pages 1-15.
    10. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    11. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
    12. Taylor, BJ & Imbabi, MS, 1998. "The application of dynamic insulation in buildings," Renewable Energy, Elsevier, vol. 15(1), pages 377-382.
    13. Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
    14. Li, Xiwang & Malkawi, Ali, 2016. "Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions," Energy, Elsevier, vol. 112(C), pages 1194-1206.
    15. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2015. "Measured overall heat transfer coefficient of a suspended particle device switchable glazing," Applied Energy, Elsevier, vol. 159(C), pages 362-369.
    16. Ye, Hong & Long, Linshuang & Zhang, Haitao & Gao, Yanfeng, 2014. "The energy saving index and the performance evaluation of thermochromic windows in passive buildings," Renewable Energy, Elsevier, vol. 66(C), pages 215-221.
    17. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    18. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Favoino, Fabio & Jin, Qian & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework," Energy, Elsevier, vol. 127(C), pages 301-309.
    2. Giovannini, Luigi & Favoino, Fabio & Pellegrino, Anna & Lo Verso, Valerio Roberto Maria & Serra, Valentina & Zinzi, Michele, 2019. "Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    4. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    5. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    6. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    7. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    8. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    9. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Jin, Qian & Favoino, Fabio & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 2: A parametric study for a temperate climate," Energy, Elsevier, vol. 127(C), pages 634-649.
    11. Dehwah, Ammar H.A. & Krarti, Moncef, 2022. "Optimal controls of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 320(C).
    12. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    13. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    14. Fiorito, Francesco & Sauchelli, Michele & Arroyo, Diego & Pesenti, Marco & Imperadori, Marco & Masera, Gabriele & Ranzi, Gianluca, 2016. "Shape morphing solar shadings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 863-884.
    15. Damien Picard & Lieve Helsen, 2018. "Economic Optimal HVAC Design for Hybrid GEOTABS Buildings and CO 2 Emissions Analysis," Energies, MDPI, vol. 11(2), pages 1-19, February.
    16. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    17. DeForest, Nicholas & Shehabi, Arman & Selkowitz, Stephen & Milliron, Delia J., 2017. "A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings," Applied Energy, Elsevier, vol. 192(C), pages 95-109.
    18. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    19. Ghosh, Aritra & Norton, Brian, 2019. "Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply," Renewable Energy, Elsevier, vol. 131(C), pages 993-1001.
    20. Yunbo Liu & Wanjiang Wang & Yumeng Huang, 2024. "Prediction and Optimization Analysis of the Performance of an Office Building in an Extremely Hot and Cold Region," Sustainability, MDPI, vol. 16(10), pages 1-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221030279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.